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CHAPTER 1

Introduction

Today: the homotopy hypothesis
In classical algebra, we study sets, monoids, groups, abelian groups, rings. Each of these structures

are built upon the other. In higher-level courses, we may study groupoids, which are examples of categories.
Categories, more generally, can be seen as generalizations of monoids. Monoidal categories, which are
categories with extra structure, are a generalization of rings, in some sense.

In higher algebra, we study spaces, E1-spaces, spectra, E1-ring spectra. Underlying these objects we
have ∞-groupoids, ∞-categories, and monoidal ∞-categories. When we study spaces, we do not consider
them up to homeomorphism, but instead up to weak homotopy equivalence. Thus, when we refer to “studying
spaces,” we will always mean that we are studying topological spaces up to weak homotopy equivalence. We
now give a synthetic definition of what an ∞-category is; we will circle back to a technical definition later.

What is an ∞-category? An ∞-category (or (∞, 1)-category) C should consist of:

(1) a class of objects,
(2) a class of morphisms so that HomC(X,Y ) is a space, considered up to weak homotopy equivalences
(3) a class of n-morphisms for n ≥ 2, where for instance 2-morphisms are morphisms of 1-morphisms,

3-morphisms are morphisms 2-morphisms, etc.
(4) morphisms can be composed in a suitable way,
(5) n-morphisms for n ≥ 2 are invertible in some sense.

An ∞-groupoid (or (∞, 0)-category) is an ∞-category where all the 1-morphisms are also invertible in
some sense.

Why study spaces up to weak homotopy equivalence? By the Yoneda lemma, we have

X ∼= Y ⇔ HomTop(A,X) ∼= HomTop(A, Y )

for all A ∈ Top. Figuring out Hom(A,X) up to bijection for all A is very difficult, so we prefer to study
continuous maps up to homotopy. If X and Y are nice enough, we say that f ≃ g in Hom(X,Y ) if there is
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some path I → Map(X,Y ) so that 0 7→ f and 1 7→ g. We define [X,Y ] = HomTop(X,Y )/ ≃. Then X ≃ Y
if and only if [A,X] ∼= [A, Y ] for all A ∈ Top.

We may then ask when [A,−] : Top∗ → Set factors through Grp or Ab. One can show that [A,−] factors
through Grp if and only if A is a co-H-group in Top. That is, there are maps

A→ A ∨A
A→ ∗,

which are coassociative, counital, coinvertible.

Example 0.1. One example of a co-H-space is Sn for n ≥ 1. The map Sn → Sn ∨ Sn is the pinch map,
and the counit is the unique map Sn → ∗.

Definition 0.2. A space X is weakly homotopy equivalent to Y , written X ∼ Y , if there is a map X → Y
inducing an isomorphism

πn(X) = [Sn, X]∗ ∼= [Sn, Y ]∗ = πn(Y ),

for all n ≥ 0 (for n ≥ 1 this is a group isomorphism).

Note that if X ∼ Y , then Hn(X) ∼= Hn(Y ) for any n.

Theorem 0.3. (Cellular approximation) For any X in Top, there exists a CW complex X̃ with a

canonical map X̃
∼−→ X that is a weak equivalence.

Theorem 0.4. (Whitehead) If X,Y are CW complexes, then X
≃−→ Y is a homotopy equivalence if and

only if X
∼−→ Y is a weak homotopy equivalence.

Exercise 0.5. Find spaces X and Y which are weakly homotopy equivalent but not homotopy equivalent.
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CHAPTER 2

Homotopy theories

1. Simplicial sets

Let ∆ denote the simplex category, whose objects are ordered sets of the form [n] = {0, 1, . . . , n}, and
whose morphisms are order-preserving maps. The morphisms of ∆ are generated by cofaces and codegen-
eracies. For example, cofaces are of the form

d0, d1 : [0]→ [1],

skipping 0 or 1 in [1], etc. The codegeneracies look like s0 : [1]→ [0] which “repeat” an element. The cofaces
and codegeneracies satisfy certain cosimplicial identities.

If C is a category, we let sC = C∆op

denote the category of simplicial objects in C. If C = Set, we
write sSet := Set∆

op

and call it the category of simplicial sets. A simplicial set X• ∈ sSet consists of sets
X0, X1, . . . together with face and degeneracy maps satisfying the simplicial identities.

Example 1.1 (The nerve of a small category). Let C ∈ Cat be a small category. We let N•C denote the
simplicial set with N0C = ObC, N1C = MorC, and NnC the set of n composable morphisms in C. That is,

NnC = N1C×N0C · · · ×N0C N1C.

The face maps are given by source/target/composition, and the degeneracies insert an identity morphism.

Example 1.2. By the Yoneda embedding, we get a functor

∆n := Hom∆(−, [n]) : ∆op → Set.

If X• is a simplicial set, then the set of n-simplices Xn is in bijection with HomsSet(∆
n, X•).

Example 1.3 (Dold–Kan). There is an isomorphism Ch≥0R
Γ−→ sModR, where ΓmC• = ⊕[n]↠[k]Ck. The

faces and degeneracies are left as an exercise.

Example 1.4. Define ∆n
Top ⊆ Rn+1 by{

(t0, . . . , tn) ∈ Rn+1 : 0 ≤ ti ≤ 1,
∑

ti = 1
}
.

View [n] = {v0, . . . , vn}, for vi = (0, . . . , 0, 1, 0, . . . , 0) with a 1 at the ith place. Then if α : [m] → [n] in
∆, we can define α(vi) = vα(i). Extend linearly to get α∗ : ∆

m
Top → ∆n

Top. Then ∆•Top is a cosimplicial
topological space.

Example 1.5. IfX ∈ Top, we can define a simplicial set Sing•(X) ∈ sSet by Singn(X) = HomTop

(
∆n

Top, X
)
.

Definition 1.6. If X• ∈ sSet, its geometric realization is the topological space

|X•| = ⨿n≥0Xn ×∆n
Top/ ∼,

where (x, s) ∼ (y, t) if and only if there is some α : [m]→ [n] so that α∗y = x and α∗s = t.

Example 1.7. For n ≥ 0, |∆n
• | ∼= ∆n

Top.

Exercise 1.8. For any simplicial set X, |X•| is always a CW complex.

Exercise 1.9. There is an adjunction | − | : sSet ⇄ Top : Sing(−)

Definition 1.10. A map X• → Y• is a weak homotopy equivalence in sSet if |X•|
∼−→ |Y•| is a weak homotopy

equivalence of spaces.
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Theorem 1.11 (Quillen). Simplicial sets up to weak equivalence is equivalent to topological spaces up
to weak homotopy equivalence. Moreover, for any X ∈ Top, |Sing(X)| is weakly equivalent to X.

The homotopy hypothesis (continued). If we are interested in studying Top up to weak homotopy
equivalences, we may equivalently study sSet up to weak equivalence; the relationship between the two
categories was given by the geometric realization / singular complex adjunction.

Recall that ∆n = Hom∆(−, [n]). We define the kth horn Λn
k ⊆ ∆n as a coequalizer in sSet ∐

0≤i<j≤n

∆n−2 ⇒
∐
i̸=k

∆n−1

→ Λn
k ,

where the two maps are δj−1 and δi. The geometric realization of Λn
k is the topological n-simplex, with the

middle and the face opposite the kth edge removed.

Definition 1.12. A simplicial set Y ∈ sSet is a Kan complex if for all k ≤ n, and for every Λn
k → Y , there

exists a (not necessarily unique) lift:

Λn
k Y

∆n

Exercise 1.13. A simplicial set Y is a Kan complex if and only if for any (n−1)-simplices y1, . . . , yk−1, yk+1, . . . , yn
such that diyj = dj−1yi for i < j, i, j ̸= k, there exists an n-simplex y such that diy = yi for all i ̸= k.

Exercise 1.14. The simplicial set Sing(X) is always a Kan complex for any X ∈ Top.

Exercise 1.15. The simplicial set ∆n is not a Kan complex for n ≥ 1.

Exercise 1.16. If X ∈ sGrp, then the underlying simplicial set of X is always a Kan complex.

We will see later that, up to weak homotopy equivalence, every simplicial set is a Kan complex.
Recall the Dold-Kan correspondence

sModZ ∼= Ch≥0Z ,

which sends weak homotopy equivalences to quasi-isomorphisms. Given a simplicial set X∗, we can take an
associated simplicial abelian group Z[X∗] by taking the free group on n-simplices at level n. We can ask
what Z[X∗] corresponds to as a chain complex. One answer is that

Z[Sing(X∗)]↔ C∗(X;Z),

8



which tells us that

π∗ (Z [Sing(X)]) ∼= H∗(X;Z).

In some sense, we can view Z[Sing(X)] as being (equivalent to) the free commutative monoid on X. This
statement is what is known as the Dold-Thom theorem.

Homotopy hypothesis: Spaces (up to weak equivalence) are ∞-groupoids. For us, spaces up to weak
equivalences correspond to Kan complexes.

Given X ∈ Kan, we can call X0 the objects, and X1 the morphisms. The horn filling conditions imply
that we can compose and invert morphisms in X1, witnessed by simplices in X2.

Definition 1.17. A quasi-category (i.e. ∞-category) is a simplicial set with inner horn lifting property.
That is, we can lift against horns Λn

k for 0 < k < n.

Exercise 1.18. A quasi-category has unique horn filling if and only if it is isomorphic to the nerve of a
1-category.

2. Model structures

Vista: Every nice infinity category is equivalent (in some sense) to a model category.

Notation 2.1. Let M be a category, and χ ⊆M a class of morphisms. We define LLP(χ) to be the class of
morphisms in M so that f has the left lifting property with respect to all morphisms in χ:

· ·

· ·
f ∈ χ

Similarly we can define f ∈ RLP(χ) by

· ·

· ·
χ ∋ f

Definition 2.2. A weak factorization system on a categoryM consists of a pair (C,F) of classes of morphisms
such that
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(1) Given any f : X → Y in M, it factors (not necessarily uniquely) as

X Y

W

f

C∋ ∈F

(2) C = LLP(F) and F = RLP(C).

Example 2.3. In Set, the monomorphisms and epimorphisms give a weak factorization system. A factor-
ization is

X Y

X × Y

f

idX×f πY

Definition 2.4. A model structure on M consists of three classes of morphisms:

W weak equivalences
Cof cofibrations
Fib fibrations

We use the notation C̃of := Cof ∩W and F̃ib = Fib ∩W , and call these trivial cofibrations (resp. trivial
fibrations). These collections of morphisms are subject to the constraint that

(1) M is bicomplete (all limits and colimits)1

(2) W satisfies 2-out-of-3 property2

(3)
(
Cof, F̃ib

)
and

(
C̃of,Fib

)
are weak factorization systems.

Terminology 2.5. A category with a model structure is referred to as a model category.

Notation 2.6. We will decorate each class of morphisms as

W
∼−→

Cof ↪−→
Fib ↠

1We might also require finitely bicomplete.
2If f and g are composable, and any two of f , g, gf are in W then so is the third.
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Exercise 2.7. The collections W , Cof, and Fib are closed under retracts: that is, if we have a diagram

· · ·

· · ·
f g f

then if g ∈W (resp. Cof or Fib) then f ∈W (resp. Cof or Fib).

Definition 2.8. Let M be a model category, and let ∅ ∈M the initial object and ∗ ∈M the terminal object.

• We say that X ∈M is cofibrant if the unique map ∅ → X is a cofibration.
• We say that X ∈M is fibrant if the unique map X → ∗ is a fibration.

• We say that X̃ is a cofibrant replacement of X if

∅ X

X̃

∼

• We say that X̃ is a fibrant replacement of X if

X ∗

X̃

∼

Example 2.9. Let M = Top, W = weak homotopy equivalences, Cof = relative CW complexes3 The

fibrations are determined by Fib = RLP(C̃of) or, equivalently, RLP(Dn → Dn× I). Every object is fibrant,
and the cofibrant objects are precisely the CW complexes. Cofibrant replacement is cellular approximation.

Proposition 2.10. Identities and isomorphisms are weak equivalences in a model category.

Proof. For any X ∈M, we can fibrantly replace it to get X
∼
↪→ X̃. Consider the commutative diagram

X X

X̃.

id

∼ ∼

By 2-out-of-3, the identity id : X → X is also a weak equivalence. More generally if f : X → Y is an
isomorphism in M, then by the diagram

X Y X

Y Y Y,

f

f f−1

f

we see that f is contained in W . □

If (C,F) is a weak factorization system, then both C and F are closed under retracts. Hence Cof, C̃of,

Fib, F̃ib are closed under retracts. As an exercise, show that W is also closed under retracts.

Exercise 2.11. A category M is a model category if and only if Mop is a model category.

Theorem 2.12. Cofibrations are closed under pushouts and coproducts.

3A ↪−→ X is a relative CW complex if X is built out of A by attaching cells.
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Proof. Given any test square, we can try to lift:

X Y A

Z P B.

∼
⌜

This map is constructed by universal property of the pushout:

X Y

Z P

A.

⌜

∃!

For coproducts, we can take Xi ↪−→ Yi for i ∈ J . Let’s try to lift:

Xi ⨿iXi A

Yi ⨿iYi B.

∼

We know that each Xi ↪−→ Yi is a cofibration hence it lifts against the big square. By universal property a
map ⨿iYi → A exists. □

Example 2.13. If C is a bicomplete category, then C has a model structure where W is the isomorphisms,
and Cof = Fib = MorC.

Example 2.14. If M = Top, the Quillen model structure is given by

• W = weak homotopy equivalences,
• Cof = retracts of relative CW complexes,
• Fib = Serre fibrations (RLP(Dn ↪−→ Dn × I)).

Example 2.15. The Strøm (or Hurewicz) model structure on Top is given by

• W = homotopy equivalences,
• Fib = Hurewicz fibrations (RLP(A→ A× I) for all A ∈ Top),
• Cof = closed cofibrations in Top.

Fibrant replacement in the Strøm model structure looks like

X Y

Mf

f

≃

Where Mf = (X × I) ∪X Y is the mapping cylinder.

12



Example 2.16. The Kan model structure on sSet is given by

• W = weak homotopy equivalences,
• Cof = monomorphisms (levelwise injections),
• Fib = Kan fibrations (RLP(Λn

k → ∆n) for all 0 ≤ k ≤ n).
Everything is cofibrant here (since the empty simplicial set injects into everything). Fibrant objects are Kan
complexes. Thus, every simplicial set is weakly equivalent to a Kan complex!

Theorem 2.17 (Milnor). The natural map X → Sing(|X|) is a weak homotopy equivalence for any
simplicial set X. (See also Kerodon, 3.5.4.1.)

Definition 2.18. Let C be a category, and W ⊆ C a subcategory. A functor F : C → D is called the
localization of C with respect to W if:

(1) F (f) ∈ isoD if f ∈ MorW ,
(2) For any other F ′ satisfying (1), we have

C D′

C

F ′

F
∃!

.

We let C→ C[W−1] denote the localization.

Here is a naive way to construct C[W−1]: we take the free category on C and “W−1.” That is, we take
the same objects, but allow morphisms to be “zigzags” of morphisms forward in C and morphisms backwards
in W , and we mod out by the relation that things in W become isomorphisms. There are size issues here.

Theorem 2.19. If M is a model category, then localization M → M[W−1] exists. We denote by
Ho(M) = M[W−1] the homotopy category of M.

Recall in Top that f ≃ g : X → Y if there is a map H : X×I → Y so that H(−, 0) = f and H(−, 1) = g.

Definition 2.20. Let M be a model category. A cylinder object on X ∈M is defined to be

X ⨿X Y

Cyl(X)

∇

∼

The construction of cylinder objects is not functorial.

A (left) homotopy from f to g is a map H : Cyl(X) → Y such that H ◦ i0 = f and H ◦ i1 = g. We
denote this by f ≃ g.

Proposition 2.21. We have that i0 : X → Cyl(X) is a weak equivalence (and same for i1).
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Proof. We have

X X ⨿X Y

Cyl(X)

id

i0

∇

∼

By 2-out-of-3 on the outside maps, the result follows. □

Proposition 2.22. If X is cofibrant, then i0, i1 : X → Cyl(X) are cofibrations.

Proof. Since cofibrations are preserved under pushouts, we have that i0 and i1 are cofibrations:

∅ X

X X ⨿X

i0

i1

⌜

□

Theorem 2.23. (Exercise) IfX is cofibrant, then homotopy≃ gives an equivalence relation on Hom(X,Y )
for any Y .

We can think of a map

HomM(X,Y )/ ≃ ×HomM(Y, Z)/ ≃ → HomM(X,Z)/ ≃
(f, g) 7→ g ◦ f.

In order for this to be well-defined, we need Z to be fibrant.

Lemma 2.24. If Z is fibrant, and f ≃ g : X → Z, then if h : X ′ → X, we have that fh ≃ gh.

Proof. We have H : Cyl(X)→ Y with H0 = f and H1 = g. By lifting, we get

X ′ ⨿X ′ X ⨿X Cyl(X)

Cyl(X ′) X ′ X.

∼

This gives the desired map. We used fibrancy of Z to ensure that the map Cyl(X) → X was a trivial
fibration (or could be replaced with a better cylinder object using a map to Z). □

Theorem 2.25. In M, given f : X → Y with X cofibrant and Y fibrant, then f ∈W if and only if f is
a homotopy equivalence.4

Notation 2.26. Mc = cofibrant objects in M, and Mf = fibrant objects in M. We denote by Mcf = objects
which are both cofibrant and fibrant.

Concretely, we can define Ho(M) as the objects in M, but where

HomHo(M)(X,Y ) = HomMcf/≃(RQX,RQY ),

where R is a fibrant replacement and Q is a cofibrant replacement.

4Meaning that there is some g : Y → X with fg ≃ id and gf ≃ id.
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Exercise 2.27. Given X → Y in M, there exists QX
f̃−→ QY such that

QX QY

X Y.

∼

f̃

∼

f

Here f̃ is well-defined up to left homotopy.

Given some M→ Ho(M), we just need to check that W 7→ isos, and it is universal in that way.

3. Derived functors

Definition 3.1. Suppose M and N are model categories, and take a functor F : M → N. A left derived
functor of F is an (absolute) right Kan extension of F along γM : M→ Ho(M):

M N

Ho(M)

F

γM
ℓ

if G : Ho(M)→ N and s : G ◦ γM ⇒ F , then there exists a unique s′ : G⇒ LF so that ℓ ◦ (s′ ◦ γM) = s.

M N

Ho(M)

F

γM

ℓ

s′

Definition 3.2. Let F : M → N. A total left derived functor LF : Ho(M) → Ho(N) is the left derived

functor of M
F−→ N

γN−−→ Ho(N).

Example 3.3. If F : M → N where if f ∈ W between cofibrant objects then Ff is a weak equivalence in
N, then LF exists:

M N Ho(N)

Ho(M)

F

We will have that LF (X)
∼−→ F (X) whenever X is cofibrant. In general, LF (X) = F (Q(X)).

Definition 3.4. Let F : M→ N. We say that F is a left Quillen functor if

(i) F is a left adjoint
(ii) F preserves cofibrations and trivial cofibrations.

In this case if G is a right adjoint, then we say the adjunction is a Quillen adjunction / Quillen pair.5

Exercise 3.5. Show that L is left Quillen if and only if G is right Quillen.

Lemma 3.6. (Ken Brown’s Lemma) If F : M → N is any functor between model categories which sends
trivial cofibrations between cofibrant objects to weak equivalences in N, then F sends any weak equivalence
between cofibrant objects to weak equivalences.

Proof. Let f : A
∼−→ B, where A,B ∈ Mc. We need F (f) to be a weak equivalence. Consider the

factorization of the coproduct of f and the identity on B:

A⨿B B

C

f⨿idB

q
∼

p

5There is a dual notion of right Quillen functor, meaning it is a right adjoint which preserves fibrations and trivial fibrations.
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Then consider the pushout:

∅ A B

B A⨿B

C

B

iA

f

∼

q q

p

p

We have that

B
iB
↪→ A⨿B

q
↪→ C

A
iA
↪→ A⨿B

q
↪→ C

are both trivial cofibrations, hence their images under F are weak equivalences. We see that

F (p) ◦ F (q ◦ idB) = F (p ◦ q ◦ idB) = F (idB).

Therefore F (p) is a weak equivalence by 2-out-of-3. □

Theorem 3.7. Suppose that F : M→M is left Quillen. Then LF : Ho(M)→ Ho(N) exists and can be
defined as

Ho(M)
Q−→ Ho(Mc)

F−→ Ho(N).

Moreover, we obtain an adjunction on the homotopy categories:

LF : Ho(M) ⇄ Ho(N) : RG.

Proof idea. We have a natural iso

HomM(X,G(Y )) ∼= HomN(F (X), Y ),

compatible with homotopy equivalence:

HomM(X,G(Y ))/ ≃∼= HomN(F (X), Y )/ ≃

□

Theorem/Definition: Take a Quillen adjunction F : M ⇄ N : G. Suppose that f : X
∼−→ G(Y ),

with X ∈ Mc and Y ∈ Nf is a weak equivalence if and only if f ♭ : F (X) → Y is. Then LF and RG are
equivalences of categories, we call this a Quillen equivalence.

Example 3.8. We have that

| − | : sSetKan ⇄ TopQuillen : Sing(−)

is a Quillen equivalence.

Example 3.9. We have that

id : TopQuillen ⇄ TopStrøm : id

is a Quillen adjunction but not a Quillen equivalence.

Q: If M and N are model categories such that there is an equivalence of categories Ho(M) ∼= Ho(N), is
this always coming from a Quillen equivalence?

A: No! Dugger–Shipley, 2009.
This indicates that Quillen equivalence is a good notion but it is not a perfect notion.
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4. Guided example: chain complexes

Let’s take ChZ to be homologically graded unbounded chain complexes. There are three model structures
of interest. We first start with the projective one:

(ChZ)projective:

• weak equivalences are quasi-isomorphisms
• fibrations are levelwise epimorphisms
• cofibrations are levelwise monomorphisms such that the cokernel of each fn : Xn → Yn is free.

If M ∈ Ab, we define Sn(M) to be the chain complex M [n] which is concentrated in M at degree n. If
M = Z, we call it Sn. We define Dn(M) to be a chain complex

· · · → 0→M
id−→M → 0→ · · ·

with two M ’s concentrated in degrees n and n− 1. We call Dn(Z) =: Dn.

Exercise 4.1. Show that fibrations are RLP(0→ Dn) for all n. That is,

0 X

Dn Y.

We claim this lifts iff X → Y is a levelwise epimorphism. We have that HomCh(D
n, Y ) ∼= Yn, so we are just

asking if every element in Yn lifts to an element in Xn.

Exercise 4.2. Show that F̃ib = RLP
(
Sn ↪−→ Dn+1

)
for all n. Consider HomCh(S

n, Y ). A map looks like

· · · Z 0 · · ·

· · · Yn Yn−1 · · ·

That is, it picks out a class in Yn which maps to zero under the differential. The data of a square

Sn−1 X

Dn Y

p

is the data of (y, x) ∈ Yn ⊕ Zn−1X so that p(x) = dy. Show that a lift exists if and only if p is a trivial
fibration.

Other model structures.
(ChR)injective:
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• W = quasi-isomorphisms
• Cof = fiberwise monomorphisms6

• Fib = fiberwise epimorphisms with fibrant kernel

We get a Quillen equivalence

id : (ChR)projective ⇄ (ChR)injective : id.

We also have have a third one which is not Quillen equivalent.
(ChR)Hurewicz:

• W = homotopy equivalences of chain complexes
• Cof = split levelwise monomorphisms
• Fib = split levelwise epimorphisms

We denote by D(R) = Ho
(
(ChR)proj

)
the derived category of a ring R.

We can also think about connective chain complexes (which are zero in negative degrees). We have an
adjunction

ChR ⇄ Ch>0
R .

This induces a model structure on Ch>0
R making it into a Quillen adjunction but not a Quillen equivalence.

We denote by Ho(Ch≥0R ) = D≥0(R).

We get a model structure:
(
Ch>0

R

)
proj

• W = quasi-isomorphisms
• Fib = positive epimorphisms (may not be epi in degree 0)
• Cof = monomorphisms with projective cokernel. The cofibrant objects here are levelwise projective
R-modules.

If we take M ∈ ModR, we can view S0(M) ∈ Ch≥0R , and take a cofibrant replacement of it P
∼
↠ S0(M).

This is exactly a projective resolution of M !

· · · P2 P1 P0 0

· · · 0 0 M 0.

Example 4.3. Let M ∈ ModR. Then we can take

S0(M)⊗R − : Ch≥0R → Ch≥0R .

We can check that this is left Quillen. We can look at its total left derived functor S0(M) ⊗L
R −. We can

see that

M ⊗L
R N := S0(M)⊗L

R S
0(N) ≃ S0(M)⊗R P•,

where P• is a projective resolution of N . We have that

Hi(M ⊗L
R N) = TorRi (M,N).

Exercise 4.4. In the same way, if we want to derive hom, we can check that

HomD≥0(R)(S
m(M), Sn(N)) ∼= Extn−mR (M,N).

Via Dold-Kan, we have a Quillen adjunction

R[−] : sSetKan ⇄ sModR : U,

with the model structure on sModR given by weak homotopy equivalences as underlying simplicial sets, and
fibrations as underlying Kan fibrations.

Then Dold-Kan takes the form of a Quillen equivalence

N : (sModR)Kan ⇄ (Ch≥0R )proj : Γ.

6Here we roughly have that Cof = LLP(Dn → 0) and F̃ib = LLP(Dn+1 → Sn).
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In general N(X ⊗R Y ) ̸∼= N(X)⊗R N(Y ), however N(X ⊗ Y ) ∼= N(X)⊗R N(Y ). They both describe
D≥0(R) in a monoidal way.

For Dold–Kan Ch≥0 ∼= sModR, we have

M ⊗N ⇄M ⊗R⊗N ⇄M ⊗R⊗2N · · ·

we denote this by B•(M,R,N) and call it the bar construction.

5. Homotopy (co)limits

Motivation: Limits and colimits are not invariant under (weak) homotopy equivalence.

X CX

CX ΣX
⌜

X ∗

∗ ∗⌜

However ΣX ̸≃ ∗.
Let M be a model category, and C a small category. Then we denote by Fun(C,M) = MC. Let C0 ⊆ C

be the discrete subcategory spanned by Ob(C). Let MC0 =
∏

C0
M. This has a model structure where W ,

Fib, and Cof are determined objectwise.
Consider ι : C0 ↪−→ C. This induces a map

ι∗ : MC →MC0

F 7→ F |C0
.

This admits adjoints:

ι! ⊣ i∗ ⊣ i∗.

We have that ι∗ creates W and Fib.
We have

(
MC
)
proj

:

• W = objectwise weak equivalence
• Fib = objectwise fib
• Cof = ? induced by ι!Cof

We have that M is cocomplete, so we get a tensoring

M× SetC →MC

(X,F ) 7→ X ⊗ F = ⨿F (−)X.

We have (X × F )(c) = ⨿F (c)X.
There are representable functors

C(c,−) : C→ Set

d 7→ C(c, d).

By Yoneda, there is a natural iso

SetC(C(c,−), F ) ∼= F (c).

Tensoring with a representable functor gives

X ⊗ C(c,−) = ⨿C(c,−)X.

This is the free diagram of X generated at c.
This gives an adjunction

−⊗ C(c,−) : M ⇄ MC : evc.

In this case

ι!(F ) = ⨿c ⨿C(c,−) F (c),
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which is the free diagram in M generated by F . Evaluating at d gives

ι!(F )(d) = ⨿c∈C ⨿C(c,d) F (c).

This is the functor ι! : M
C0 →MC. We see that ι!X is a left Kan extension

C0 M

C

ι

X

There is a diagonal functor

M
∆−→MC

C 7→ constant functor at X.

This admits adjoints

colim ⊣ ∆ ⊣ lim .

Proposition 5.1. The adjunction

colim :
(
MC
)
proj

⇄ M : ∆

is Quillen.

We denote hocolim := Lcolim. There is a map hocolim(−)→ colim(−), and

hocolim(F ) ≃ colim(QF ).

Here QF denotes a cofibrant replacement in
(
MC
)
proj

. For a general C, QF is very difficult to determine.

Consider C = a← b→ c, and let X ∈MC0 . Then ι!X is equal to

X(b) X(b)⨿X(c)

X(a)⨿X(b)

Cofibrant objects in MC are of the form

X Z

Y

with X cofibrant. Here cofibrant replacement is easy. We start with Y
f← X

g−→ Z, and we replace X with

X̃
∼−→ X to get

X̃ Y

Z

If we cofibrantly replace X̃ → Z, and similarly for Y , we get

X̃ Z̃

Ỹ

The maps we used to fibrantly replace induces a fiberwise weak equivalence between this diagram and the
one we started out with.
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In (Top)Quillen, we can take hocolim(∗ ← X → ∗). We cofibrantly replace X if necessary, and replace
X → ∗ by X ↪−→ CX, which is a cofibration. In this case we see that

hocolim (∗ ← X → ∗) ≃ colim(CX̃ ← X̃ → CX̃) = ΣX̃.

More generally, hocolim(Y
f← X

g−→ Z) is the double mapping cylinder M(f, g).

Theorem 5.2. If M is a left proper model category then

hocolim(Y ←−↩ X → Z) ∼= colim(Y ←−↩ X → Z).

Proof. In the easy case, X is cofibrant, so we can factor the map to Z to get

X Z̃ Z

Y H P.

∼

⌜

The entire rectangle is a pushout, so Z → P is a cofibration, and the right square is a pushout by the pasting
law, so H → P is a weak equivalence. □

Example 5.3. Let C = ∗ → ∗ → · · · . Show that X0 → X1 → · · · is cofibrant in MC if and only if X0 is
cofibrant and Xi ↪−→ Xi+1 is a cofibration for each i.

There is a third model structure on MC called the Reedy model structure (need C to be a Reedy cat).
In this case, hocolim∆op(X•) ∼=

∣∣QReedyX•
∣∣, for X a simplicial object in M.

Bar construction: Let M a model cat, C a small cat, F : Cop →M, and G : C→M. Then we define

B• (F,C, G) := ⨿c0∈CF (c0)×G(c0) ⇔ ⨿c0←c1F (c0)×G(c1) ⇔ · · ·

Example 5.4. If F = ∗ = G, then

B•(∗,C, ∗) ∼= N•(C
op).

Pièce de résistance:

Theorem 5.5. (Bousfield–Kan) If F : C→M is a functor, then

hocolimC(F ) ≃ |B•(∗,C, F )| .

6. Combinatorial model categories

Show how model categories are enriched in spaces up to homotopy types and have cellular approximations

Definition 6.1. A model category is combinatorial if it is presentable7 and cofibrantly generated.

To motivate presentability, let X be a set. Then X is determined by its elements, meaning that

HomSet(∗, X) ∼= X.

Then we can present X as X = ∪x∈X {∗}.
Definition 6.2. A colimit is filtered if the diagram is filtered, meaning it is nonempty and every subdiagram
has a cocone.

Theorem 6.3. (Exercise) In Set, filtered colimits commute with finite limits. That is, if F : I×J → Set
with I finite and J filtered, then

colimJ

(
lim
I
FI

)
∼−→ lim

I
(colimJFJ)

is an isomorphism.

Proposition 6.4. A set X is finite if and only if

HomSet(X,−) : Set→ Set

preserves filtered colimits.

7By this we mean “locally presentable.”
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Proof. For the backwards direction, let I = {Xi} be the collection of finite subsets of X. Then
X = colimIXi. In particular, we have that

colimI Hom(X,Xi) ∼= Hom(X,X)

(X
fi−→ Xi)

∼−→ idX?

For the forwards direction, HomSet(∗,−) ∼= idSet so it preserves colimits. Since X is finite, we have that
X = {x1, . . . , xn}, hence

Hom(X,−) ∼= Hom(∪i {xi} ,−) ∼= lim
i

Hom({xi} ,−) .

Then we use finite limits commuting with filtered colimits. □

Definition 6.5. An object X ∈ C is compact if HomC(X,−) : C→ Set preserves filtered colimits.

Hence if F : I → C, with I filtered, then a map X → colimIF factors through an F (i).

Examples 6.6. Compact objects:

• Set, compact = finite set
• VectF , compact = finite dimensional
• ModR, compact = finitely presented
• Grp, compact = finitely presented
• Top, compact = finite sets with discrete topology
• Ch, compact = perfect chain complexes (bounded, levelwise finitely generated and projective)
• sSet, compact = finite simplicial sets (Xn finite for each n, and there exists an m so that all

non-degenerate simplices have dimension ≤ m).

A topological space is (topologically) compact if and only if X ∈ O(X) is (categorically) compact.

Lemma 6.7. Finite colimits of compact objects are compact.

Definition 6.8. A category C is presentable if

(1) C is cocomplete
(2) There exists a set S of compact objects in C such that every object in C is a filtered colimit of

objects in S.

We also say the “ind-completion” of S is C, denoted Ind(S) = C.

Theorem 6.9. C is presentable if and only if there is an adjunction of the form

Fun(Kop,Set) ⇄ C,

where K is some small category, and the right adjoint is fully faithful and preserves filtered colimits.

We might take K for example to to be isomorphism classes of compact objects in C, then we have

C→ Fun(Kop,Set)

X 7→
(
Kop → Cop

Hom(−,X)−−−−−−−→ Set

)
.

Theorem 6.10. Suppose C and D presentable. Then L : C→ D preserves colimits if and only if L is a
left adjoint.
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Definition 6.11. Let I be a set of maps in a cocomplete category, fix λ to be an ordinal, and let X : λ→ C

a functor, and suppose that X(α)→ X(α+ 1) fits into

Aα X(α)

Bα X(α+ 1),

where Aα → Bα is in I. Then we say that X(0) → colimλX is a relative I-cell complex. We say an object
Y ∈ C is an I-cell complex if ∅ → Y is a relative I-cell complex.

If I =
{
Sn ↪−→ Dn+1

}
n≥0, then we are recovering the idea of CW complexes in spaces.

We denote by CellI(C) the class of relative I-cell complexes.

Exercise 6.12. We have that CellI(C) is the smallest class in C closed under composition, pushouts, and
filtered colimits.

Theorem 6.13. (Small object argument) Let C be cocomplete, let I a set of maps in C, and suppose
that for all A → B in I, we have that A is compact with respect to the full subcategory of of I-cells in C.
Then there exists a functorial factorization of maps in C:

X Y

C

f

γ δ

with γ ∈ CellI(C) and δ ∈ RLP(I).

Proof idea. Start with X(0) = X, and take a map X(0) → Y . Suppose X(β) = colimα<βX(α) is
constructed with X(β)→ Y . Look at the set8

S =


A X(β)

B Y

g : g ∈ I

 .

8Note this set is nonempty because we can take g to be id : X(β) → X(β).
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Denote by gs the map A→ B appearing in s ∈ S. Then we build

⨿s∈SAs X(β)

⨿s∈SBs X(β + 1)

⨿sgs ∈CellI(C)
⌜

By UP of the pushout, there is an induced map X(β + 1)→ Y . Then we claim that

X(0)→ colimβX(β) =: C

is in CellI(C). The only thing left to show is that C → Y is in RLP(I). Take

A C = colimβX(β)

B Y.

Since A is compact with respect to I-cells, the map A→ C factors through some X(β). Since B → Y factors
through X(β + 1), we see that it lifts to B → C. □

Definition 6.14. A model category M is cofibrantly generated if there exist sets of maps I, J in M so that

• Cof = retracts of I-cell complexes, denoted ̂CellI(C)9

• Cof = ̂CellJ(C)
and “I and J permit the small object argument.”

Example 6.15. For TopQuillen, we can take

I =
{
Sn ↪−→ Dn+1

}
J = {Dn → Dn × [0, 1]} .

Example 6.16. For sSetKan, we can take

I = {∂∆n → ∆n}

J =
{
Λk
n → ∆n

}
.

Example 6.17. For (ChR)proj,

I =
{
Sn → Dn+1

}
J = {0→ Dn} .

Example 6.18. The Strøm model structure is not cofibrantly generated in the definition above.

Theorem 6.19. (Kan — Right transfer) Let M be a cofibrantly generated model category and C is any
category where there is an adjunction

F : M ⇄ C : G.

Then C has a model structure where W and Fib are created by G. The model structure is cofibrantly
generated by F (I) and F (J) if:

(1) F (I) and F (J) permit the small object argument
(2) G

(
CellF (J)

)
are weak equivalences in M.

For combinatorial model categories, we get an inductive argument for building cofibrant replacements.
[Rezk-Schwede-Shipley] Combinatorial model categories are always simplicially enriched.
[Dugger] Any combinatorial model category M is Quillen equivalent to a localization of a projective Kan

one:

LτFun(K
op, sSet) ⇄ M.

9The hat −̂ means “retracts of -”
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7. Multiplicative structures on homotopy theories

The goal is to give a monoidal structure on the homotopy category Ho(M) of a model category M, then
we can consider rings and modules up to homotopy.

Definition 7.1. We say a symmetric monoidal category (C,⊗, I) is presentably symmetric monoidal if:

• the category C is presentable;
• the bifunctor −⊗− : C× C→ C preserves colimits in each variable.

One consequence of being a presentably symmetric monoidal, is that the induced functor X ⊗− : C→ C

has a right adjoint, often denoted [X,−] : C→ C, i.e. the monoidal structure is closed.

Definition 7.2. We say a category M is a (symmetric) monoidal model category if we have the following.

(1) The category M is endowed with a model structure.
(2) It is presentably symmetric monoidal (M,⊗, I). 10

(3) It respects the pushout-product axiom, which says that the bifunctor − ⊗ − : M ×M → M is a
Quillen bifunctor, i.e. given cofibrations f : X ↪→ Y and f ′ : X ′ ↪→ Y ′ in M, the induced dashed
map f□f ′ on the pushout in M

X ⊗X ′ X ⊗ Y ′

Y ⊗X ′ P

Y ⊗ Y ′

f⊗id

id⊗f ′

f⊗id

id⊗f ′

⌜

f□f ′

is a cofibration in M. Moreover, f□f ′ is a trivial cofibration as soon as f or f ′ is.
(4) The monoidal unit I is cofibrant.11

Examples 7.3. (sSetKan,×, ∗), ((ChR)proj,⊗R, R) and (sModR,⊗R, R) are symmetric monoidal model cat-
egories.

Examples 7.4. (TopQuillen,×, ∗) and ((ChR)inj,⊗R, R) are not monoidal model categories.

Exercise 7.5. Check that it is enough to verify the pushout-product axiom on the generating cofibrations
and trivial cofibrations, if M is a cofibrantly generated model category.

Observe that one of the consequence of being a monoidal model category is that, for any cofibrant object
X ∈ M, the induced functor X ⊗ − : M → M is a left Quillen functor (and thus [X,−] : M → M is a right
Quillen functor). Indeed, given a cofibration f ′ : A→ B, denote by f : ∅ ↪→ X the cofibration and apply the
pushout product to f□f ′ we obtain the diagram:

∅ ⊗A ∅ ⊗B

X ⊗A X ⊗A

X ⊗B

∃!

∃!

∃!

id⊗f ′

⌜

id⊗f ′

Since we assume −⊗Z to be a left adjoint for any object Z, it preserves initial object, so ∅⊗A ∼= ∅ ∼= ∅⊗B.
Thus X ⊗− preserves cofibrations and trivial cofibrations. Therefore we can left derive the bifunctor given
by the monoidal product, and we denote it

−⊗L − : Ho(M)×Ho(M) −→ Ho(M).

10We may relax this condition and just ask the monoidal category to be closed.
11We may relax this condition and just ask that for some (hence any) cofibrant replacement QI → I we get that QI⊗X →

I⊗X ∼= X is a weak equivalence for any cofibrant object X.
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One can in fact check that we obtain the following.

Theorem 7.6 (Hovey). Let (M,⊗, I) be a (symmetric) monoidal model category. Then the derived
tensor product endows the homotopy category (Ho(M),⊗, I) with a (symmetric) closed monoidal structure.
Moreover, the localization functor M → Ho(M) is lax (symmetric) monoidal, and is strong monoidal if we
restrict on cofibrant objects.

Similarly, we can introduce a variation on Quillen functors so that they are compatible with the monoidal
structures.

Definition 7.7. A weak symmetric monoidal Quillen pair is a Quillen adjunction:

(M,⊗, I) (N,∧, J)
L

R

⊥

between symmetric monoidal model categories, for which L is oplax symmetric monoidal (or equivalently, R
is lax symmetric monoidal) such that:

(1) for all cofibrant objects X and Y in M, the natural oplax map L(X⊗Y )→ L(X)∧L(Y ) is a weak
equivalence;

(2) the natural map L(I)→ J is a weak equivalence.

These two conditions are immediately verified if L is strong symmetric monoidal rather than just oplax
symmetric monoidal. If the Quillen adjunction is a Quillen equivalence, then we refer to it as a weak
symmetric monoidal Quillen equivalence.

Theorem 7.8 (Schwede-Shipley). Given a weak symmetric monoidal Quillen pair

(M,⊗, I) (N,∧, J)⊥ ,

we obtain a weak symmetric monoidal adjunction on the homotopy categories:

(Ho(M),⊗L, I) (Ho(N),∧L, J)⊥

It is an equivalence of symmetric monoidal categories if the original adjunction is a weak symmetric monoidal
Quillen equivalence.

Example 7.9. (Schwede-Shipley) Regard the equivalence of categories Ch≥0R
∼= sModR as a weak symmetric

monoidal Quillen adjunction:

(Ch≥0R )proj sModR

Γ

N

⊥

where we give the normalization functor a lax symmetric monoidal structure N(A) ⊗ N(B) → N(A ⊗ B)

via the Eilenberg-Zilber map. This map is not an isomorphism, and so the equivalence Ch≥0R
∼= sModR is

not compatible with the monoidal structures. However, once derived, since the above is a weak symmetric
monoidal Quillen equivalence, we obtain that Ho(Ch≥0R ) ∼= Ho(sModR) is an equivalence of symmetric
monoidal categories. Indeed, we can show the Eilenberg-Zilber map has a homotopy inverse N(A ⊗ B) →
N(A)⊗N(B) given by the Alexander-Whitney map.

Given a monoidal model category M, we can also lift model structures on modules and algebras in M.
For instance, we can use Kan’s right transfer to defined a right-induced model structure on the category
Alg(M) of algebra objects in M using the free-forgetful adjunction:

M Alg(M)

T

U

⊥
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where T (X) =
⊕
n≥0

X⊗n. For this, not only we need to assume cofibrantly generated, we also require the

following axiom.

Definition 7.10. We say a combinatorial symmetric monoidal model category M respect the monoid axiom

if we have the following. Given any object X in M, denote by SX = {X ⊗ A id⊗f→ X ⊗ B | f ∈ J} where J
is the set of generating trivial cofibrations. Then any relative SX -cell complex is a weak equivalence. If all
objects are cofibrant, the axiom is automatically verified.

By Kan’s right transfer, in order to obtain a model structure on Alg(M) we would need to check that
maps in U(CellT (J)) are weak equivalences in M. Thus we need first to understand transfinite composition
in Alg(M). As T preserves filtered colimits, then U preserves and reflects filtered colimits. So we need to
understand certain pushouts in Alg(M). These will be pushouts along free maps: given f : X → Y in M,
consider the pushout in Alg(M)

T (X) T (Y )

A P.

T (f)

⌜

We can give a very explicit construction of P : it is the telescope in M

P0 = A P1 P2 · · ·

that we describe below. Informally, one can think of P as the formal product of elements in A and in Y
subject to the relations between letters induced by f : X → Y and the multiplication in A, while Pn only
considers at most n factors from elements in Y . Let us now give a more robust definition.

Let us denote by P({1, . . . , n}) the poset of power set of the set with n-elements. Define a functor
Wn : P({1, . . . , n})→M as follows: on objects S ⊆ {1, . . . , n}, let

Wn(S) = A⊗ C1 ⊗A⊗ C2 ⊗ · · · ⊗ Cn ⊗A

where

Ci =

{
X if i /∈ S
Y if i ∈ S

The assignment on the maps is induced by the map f : X → Y . The functor Wn defines an n-dimensional
cube diagram in M. For instance, at n = 2, it looks like:

A⊗X ⊗A⊗X ⊗A A⊗X ⊗A⊗ Y ⊗A

A⊗ Y ⊗A⊗X ⊗A A⊗ Y ⊗A⊗ Y ⊗A

Denote by W̃n the restriction of the functor W onto the full subcategory of P({1, . . . , n}) for which we
removed the terminal object. Again, for n = 2, it looks like:

A⊗X ⊗A⊗X ⊗A A⊗X ⊗A⊗ Y ⊗A

A⊗ Y ⊗A⊗X ⊗A

Let Qn = colim W̃n in M, and define Pn inductively (recall P0 = A) as the pushout in M:

Qn (A⊗ Y )⊗n ⊗A

Pn−1 Pn
⌜
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The top horizontal map is induced by the universal property of the colimit and the maps we have removed

from Wn to obtain W̃n. The left vertical map Qn → Pn−1 is defined by repeatedly applying the map X → A

whenever Ci = X in W̃n(S), i.e. i /∈ S, and then if A⊗A appears in the copy, use the multiplication on A.
We are now left to check 3 things:

(1) P is an algebra in M

(2) the induced map A→ P is an algebra homomorphism
(3) P is indeed the desired pushout in Alg(M).

For (1): the unit of A induces the unit of P :

I→ A = P0 → P = colimn≥0Pn

The multiplication on P is defined from maps Pn ⊗ Pm → Pn+m which can be defined from the pushout
definition of Pn by simply concatening all the words together. It its then elementary to show that the
multiplication is indeed associative and unital. This also automatically shows (2). For (3), suppose there
was an algebra B fitting into the diagram in Alg(M):

T (X) T (Y )

A B.

By adjunction, it also defines a diagram in M:

X Y

A B.

Define the unique homomorphism P → B of algebras by applying the maps Y → B and A → B whenever
appropriate, this uniquely defines it. We are now ready to show the following.

Theorem 7.11. (Schwede-Shipley) Suppose M is a combinatorial symmetric monoidal model category
that respects the monoid axiom, where the generating cofibrations and trivial cofibrations are denoted by
(I, J) respectively. Then there exists a right-induced combinatorial model structure on Alg(M), i.e., fibrations
and weak equivalences are created in M via the forgetful functor in the adjunction

M Alg(N)

T

U

⊥

The generating cofibrations and trivial cofibrations are (T (I), T (J)).

Proof. From Kan’s right transfer theorem, we need to check maps in U(CellT (J)) are weak equivalences.

So suppose in our construction of P above that f : X
∼
↪→ Y was a trivial cofibration. We need to show A→ P

is a weak equivalence. It is enough to show Pn−1 → Pn is a weak equivalence for all n ≥ 1. For this notice
that the map Qn → (A⊗ Y )⊗n ⊗ A is isomorphic to Qn ⊗ A⊗n+1 → Y ⊗n ⊗ A⊗n+1 using symmetry, where

Qn is obtained as Qn but where we deleted all instances of A appearing in the punctured cube W̃n. Then
using the pushout-product axiom, we can check that the induced map Qn → Y ⊗n is a trivial cofibration.
Thus by the monoid axiom, we get that Pn−1 → Pn is a weak equivalence. □

Exercise 7.12. Show that if A is cofibrant as an algebra in M, then A is also cofibrant as an underlying
object in M.

A similar result can be deduced for modules, and it is easier as colimits of modules are computed in the
underlying category.
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Exercise 7.13. Suppose M is a combinatorial symmetric monoidal model category that respects the monoid
axiom, where the generating cofibrations and trivial cofibrations are denoted by (I, J) respectively. Let R be
an algebra in M. Show that the category of right R-modules ModR(M) is combinotorial model category, with
weak equivalences and fibrations determined in M, and the generating cofibrations and trivial cofibrations
are given by I ⊗R and J ⊗R respectively, using the free-forgetful adjunction

M ModR(M)

−⊗R

U

⊥

Exercise 7.14. Show that if one additionally requires R to be a commutative algebra, then the induced
model structures in ModR(M) in previous exercise is in fact a symmetric monoidal model structure that also
satisfies the monoid axiom, with respect to the relative tensor product over R.

Exercise 7.15. Let f : R→ S be a homomorphism of algebras in combinatorial symmetric monoidal model
category M that respects the monoid axiom. Show there is a Quillen adjunction

ModR(M) ModS(M)

−⊗S

f∗

⊥

Show it is a Quillen equivalence, if and only if f is a weak equivalence. Show it is (strong) monoidal Quillen
pair if R and S are commutative.

Remark 7.16. The case for commutative algebra is more subtle. It is sometimes possible to lift the model
structure as in the non-commutative case, but further restrictions on M is required. Notably, one can see
that it is impossible to give a model structure right-induced on chains:

(ChR)proj CAlg(ChR)

U

⊥

whenever char(R) ̸= 0. Indeed, suppose char(R) = p, and A → B is a homomorphism of commutative
algebra, that is a fibration in ChR. Suppose x ∈ Hn(B), for n even. Then xp is in the image of H∗(A) →
H∗(B). There exists y ∈ A that is mapped to x but dyp = pyp−1 = 0 by Leibniz rule. Therefore it is
impossible to factor a homomorphism of commutative algebra by a weak equivalence followed by a fibration.
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8. Application: homotopy coherent multiplication on spaces

Last time: We had M a model category, and ⊗ a monoidal structure. We used this to give a monoidal
structure on Ho(M), given by ⊗L, the left derived tensor product. We used this to give a homotopy theory
on Alg(M), and ModR(M), etc.

Q: What are algebras in the homotopy category of a model structure M? An example of interest is
M = Top.

What are commutative algebras in Top?

Theorem 8.1. (Moore) If X ∈ CAlg(Top), then there is a weak equivalence

∞∏
i=1

K(πi(X), i)→ X.

Proof. Let Gn = πn(X). Then we take

0→ F → Z[Gn]→ Gn → 0.

Then we get that H̃n(∨g∈Gn
Sn) ∼= ⊕g∈Gn

H̃n(S
n) = Z[Gn]. Using the Hurewicz theorem, there is an

isomorphism

πn(∨Sn)
∼−→ H̃n(∨Sn),

so we can pick fj ∈ πn(Sn) for each ej in a basis of F . This gives us a pushout

∨j∈JSn ∨g∈Gn
Sn

∗ M(Gn, n)
⌜

This gives a map ∨n≥1M(Gn, n)→ X. By universal property, we get an algebra homomorphism1213

SP(∨n≥1M(Gn, n))→ X

The Dold–Thom theorem states that π∗SP(Y ) ∼= H̃∗(Y ), given some connectedness hypothesis (path-
connected?). We get that

SP(∨n≥1M(Gn, n)) ∼=
∏
n

SP(M(Gn, n)) =
∏
n

K(Gn, n).

□

Definition 8.2. We say that X ∈ Alg(Ho(Top)) if and only if X is a CW complex, with multiplication and
unit

X ×X → X

∗ → X

which are associative and unital up to homotopy.

These are also called H-spaces. The most prototypical example is a loop space.

12Here SP(−) denotes the infinite symmetric product, i.e. the free commutative algebra in Top.
13The infinite symmetric product is left adjoint to the forgetful functor, i.e. SP : Top ⇄ CAlg(Top) : U .
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Example 8.3. If X is a based space, we can build ΩX as the homotopy pullback of the two maps from a
point. Concatenation gives a map ΩX × ΩX → ΩX.

Example 8.4. Eilenberg-MacLane spaces K(G,n) are uniquely determined up to homotopy. We have that

πk (ΩK(G,n)) ∼= πk+1(K(G,n))

therefore ΩK(G,n) = K(G,n− 1).

Q: Given X an H-space, such that π0X is a group, is X a loop space?
A: No, there are many grouplike H-spaces that are not equivalent to ΩX. For example S7 ⊆ O the unit

octonians.
Loop spaces have an extra condition. Given w, x, y, z ∈ ΩX, there is an association (xy)z ≃ x(yz).

There is a pentagon witnessing the different ways to associate four elements.
We can keep going with 5 loops, 6 loops... and we get the Stasheff associahedra K(n), which tell us how

to concatenate n loops. These give maps

K(n)× (ΩX)n → ΩX,

witnessing the higher associativities of concatenation. We call this an A∞-algebra structure.

Theorem 8.5. (Stasheff) Given X connected, we have that X ≃ ΩY for some Y if and only if X is an
A∞-algebra in spaces that is grouplike.

Rigidification: We have that Ho(Alg(sSet,×)) ≃ AlgA∞
(Ho(Top)).

Let C = (C,⊗, I, [−,−]) be a closed monoidal category.

Definition 8.6. An operad in C is a collection of objects {O(j)}j≥0 in C such that

(1) there is a right action of Σj on O(j)
(2) O(0) = I
(3) I → O(1) exists in C

(4) composition

O(k)⊗ O(j1)⊗ · · · ⊗ O(jk)
γ−→ O(j1 + . . .+ jk)

for all k ≥ 0 and j1, . . . , jk ≥ 0 such that they are equivariant, unital, and associative.

We think about O(j) as an abstract way to compose j-ary operations.
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Example 8.7. We let Assoc be the operad defined by

Assoc(j) =
∐
σ∈Σj

I.

We can define Comm(j) = I.

Example 8.8. If X ∈ C, the endomorphism operad is given by

EndX(j) = [X⊗j , X].

Definition 8.9. A morphism of operads O→ O′ is a sequence of maps ψj : O(j)→ O′(j) for g ≥ 0 that are
equivariant, associative, and unital.

Definition 8.10. Given O an operad in C, an O-algebra (X, θ) in C is X ∈ C together with a morphism of
operads θ : O→ EndX , sending O(j)→ EndX(j). By adjointness, we think about this as O(j)⊗X⊗j → X
which are associative and unital.

This gives us a category of O-algebras, denoted AlgO(C).

Example 8.11. We have that

AlgAssoc(C)
∼= Alg(C)

AlgComm(C)
∼= CAlg(C).

We have that M is a monoidal model category if O is nice enough, i.e. we get an adjunction

M ⇄ AlgO(M).

Definition 8.12. A monad in C is an algebra in (Fun(C,C), ◦, idC). That is, M ∈ Alg(Fun(C,C)) if we have
M : C→ C together with µ :M ◦M ⇒M , and η : idC ⇒ C that are associative and unital.

Example 8.13. Every adjunction L : C ⇄ D : R defines a monad RL.

Definition 8.14. An algebra (X, θ) over a monad (M,µ, η) in C is X ∈ C together with maps θ :M(X)→ X
such that they are associative and unital, meaning that the diagrams commute:

X M(X)

X

η

θ

M(M(X)) M(X)

M(X) X.

µMX

M(θ) θ

θ

Definition 8.15. If M is a monad, a morphism of M -algebras (X, θ)→ (X ′, θ′) is a map f : X → X ′ in C

so that the diagram commutes

MX X

MX ′ X ′.

θ

Mf f

θ′

Example 8.16. Consider R a commutative ring, and the adjunction

−⊗Z R : Ab ⇄ ModR : U.

This forms a monad M := −⊗Z R : Ab→ Ab. Then AlgM (Ab) is equivalent to ModR.

This is not always true! When this happens we say the adjunction is monadic.
Given a monadic adjunction

C ⇄ D = AlgRL(C),

we get a ton of things for free:

• R will preserve colimits if RL does
• get things like free monadic resolutions, bar constructions, etc.
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[Some of these notes were typed from grad school, a bit outdated]
Given an operad O in a nice enough monoidal category C, we obtain a monadic adjunction:

C AlgO(C)⊥

The left adjoint provides the free O-algebra functor, which is given on an object X ∈ C by the coequalizer
in C: ∐

j≥0

O(j)⊗X⊗j
∐
j≥0

O(j)⊗I[Σj ] X
⊗j

First map is induced supposing we have a canonical map I → X in C, and the other map is induced by
composition γ on O(j) with j − 1-copies of O(1) and 1-copy of O(0) and thus lands to O(j − 1). [Make this
more precise]

This adjunction gives defines a monad O : C→ C. And this is always monadic (exercise). So O-algebras
in C are equivalent to O-algebra in C.

We define now an operad on the symmetric monoidal category (Top,×, ∗), where by spaces we mean
topological weak Hausdorff k-spaces.

Definition 8.17. Let Jn be the interior of the n-dimensional unit cube [0, 1]n. A little n-cube is a rectilinear
map c : Jn ↪→ Jn. Algebraically, this means the map is of the form :

(t1, . . . , tn) 7−→ (a1 + (b1 − a1)t1, . . . , an + (bn − an)tn),

with (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n such that 0 ≤ ai ≤ bi ≤ 1, for all 1 ≤ i ≤ n. The image of c defines
a n-dimensional cube in [0, 1]n with a non-empty interior and faces parallel to the faces of the ambient unit
cube.

Definition 8.18. The little n-cube operad Cn is defined as follows :

Cn(j) = {(c1, . . . , cj) | ci are little n-cubes with disjoint interior} ⊆ Map

(
j∐

i=1

Jn, Jn

)
.

The identity is defined by the element idJn ∈ Cn(1). The symmetric group Σj acts (freely) by permutation
on the indices of the tuple (c1, . . . , cj). If we write c = (c1, . . . , cj), we define the composition operation γ as
follows :

γ : Cn(k)× Cn(j1)× · · · × Cn(jk) −→ Cn(j1 + · · ·+ jk)

(c, d1, . . . , dk) 7−→ c ◦ (d1 + · · ·+ dk).
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Notice that there are natural inclusions:

Cn(j) Cn+1(j)

c (c1 × idJ , . . . , cj × idJ),

allowing to define C∞(j) = colimnCn(j) for each j ≥ 0. The composition γ extends naturally so that C∞ is
an operad.

We can reinterpret the spaces Cn(j) in terms of configuration space. Let M be a n-manifold, the j-th
configuration space of M is :

F (M ; j) =
{
(x1, . . . , xj) ∈M×j | xr ̸= xs if r ̸= s

}
⊆M×j .

It is a nj-manifold with Σj free-action on coordinates. For 1 ≤ n ≤ ∞, the spaces Cn(j) are Σj-equivariantly
homotopic to F (Rn; j) via the map :

Cn(j) −→ F (Jn; j)

(c1, . . . , cj) 7−→ (c1(p), . . . , cj(p)),

where p = ( 12 , . . . ,
1
2 ) in J

n. This makes C1 an A∞-operad, C∞ a E∞-operad, Cn a locally (n− 2)-connected
Σ-free operad.

Proposition 8.19. Given a pointed space X, its n-th iterated loop space ΩnX has a natural Cn-algebra
structure.

Proof. Regard ΩnX as the space Map
(
( [0,1]n

∂[0,1]n , ∗), (X, ∗)
)
. Define the action :

θ : Cn(j)× (ΩnX)j −→ ΩnX,

as follows: given (c1, . . . , cj) in Cn(j) and (y1, . . . , yj) in (ΩnX)j define θ(c, y) as:

[0, 1]n

∂[0, 1]n
−→ X

t 7−→
{
yr ◦ c−1r (t), if t ∈ im(cr)
∗, if t /∈ im(cr) for any 1 ≤ r ≤ j

One can check that all the desired diagrams commute. □

Recall that given a pointed space X, the associated monad of Cn is defined as:

Cn(X) =

∐
j≥0

Cn(j)×Σj
Xj

/ ∼ .

The above result implies that ΩnX is also a Cn-algebra, hence there is a map Cn(Ω
nX) → ΩnX, for any

pointed space X. There is a natural map :

αn : Cn(X) −→ ΩnΣnX,

defined as follows. The identity map on ΣnX has an adjoint X → ΩnΣnX. Applying the functor Cn we get
the left map in the composite :

Cn(X) −→ Cn(Ω
nΣnX) −→ ΩnΣnX,

and the right map is defined by the Cn-algebra structure on ΩnΣnX. The above composite defines the map
αn. It is a morphism of monads, where the monad structure on the functor ΩnΣn : Top∗ → Top∗ is defined
for any pointed space Y :

ΩnΣnΩnΣnY −→ ΩnΣnY,
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by a map ΣnΩnΣnY → ΣnY which is the adjoint of the identity map ΩnΣnY → ΩnΣnY . More concretly,
the map αn : Cn(X)→ ΩnΣnX can be regarded as follows :

Cn(X) −→ ΩnΣnX = Map

(
(
[0, 1]n

∂[0, 1]n
, ∗), (ΣnX, ∗)

)

((c1, . . . , cj), (x1, . . . , xj)) 7−→


[0,1]n

∂[0,1]n −→ ΣnX

t 7−→

{
t ∈ [0,1]n

∂[0,1]n = Sn = Σn{∗, xi}, if t ∈ im(ci) ⊆ Jn

∗, if t /∈ im(ci) for any 1 ≤ i ≤ j

 .

Theorem 8.20 (Approximation). For any based space X, there is a natural map of Cn-algebras :

αn : Cn(X)→ ΩnΣnX,

for 1 ≤ n ≤ ∞, and αn is a weak homotopy equivalence if X is connected.

Proof. We construct the following commutative diagram :

Cn(X) X̃n Cn−1(ΣX)

ΩnΣnX PΩn−1ΣnX Ωn−1ΣnX,

p̃n

p

where p is the usual path fibration to a space with fiber its loop space. The space X̃n is constructed such
that it is contractible and p̃n is a quasifibration if X is connected. □

Theorem 8.21 (Recognition). If X is a connected grouplike Cn-algebra, there exists a based space Y
and a weak equivalence of Cn-algebras between ΩnY and X.

In order to construct this delooping of X, we use the two-sided bar construction in Top∗. Given a monad
(M,µ, η) in E and a category C, a M -functor in C is a functor F : E → C with a natural transformation
λ : FM ⇒ F such that the following diagram commutes :

F (M(M(X))) FM(X), F (X) F (M(X))

FM(X) F (X), F (X).

F (µX)

λM(X) λX

F (ηX)

λX

λX

For instance, (M,µ) is itself a M -functor in E.

Definition 8.22. Given a monad (M,µ, η) in E, a M -functor (F, λ) in C, and a M -algebra (X, ξ) in E,
define the two-sided bar construction of (F,M,X) by :

Bq(F,M,X) = F (Mq(X)).

The object is simplicial in C :

F (X) F (M(X)) F (M(M(X))) F (M(M(M(X)))) · · ·

where the blue arrows are induced by ξ : M(X) → X, the red arrows by λ : F (M(X)) → F (X), the green
arrows by µ : M(M(X)) → M(X), and the black arrows by η : X → M(X). We denote its geometric
realization by B(F,M,X) =| B∗(F,M,X) |.

Proof. The operad Cn is replaced by a ”nicer” equivalent operad D so that B∗(F,D,X) is a strictly
proper simplicial space. We construct a zig-zag of maps :

X B(D,D,X) B(ΩnΣn, D,X) ΩB(Σn, D,X).

The map B(D,D,X) → X is induced by D(X) → X as X is a D-algebra and B(D,D,X) should be
regarded as the usual simplicial resolution of X. The map B(D,D,X) → B(ΩnΣn, D,X) is induced by
αn : D → ΩnΣn (and should now be regarded as a morphism of D-functors). It is a weak equivalence when
X is connected (not obvious on the simplicial resolution). The last map B(ΩnΣn, D,X)→ ΩnB(Σn, D,X)
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should be regarded as the non-trivial weak equivalence | ΩX∗ |→ Ω | X∗ |, true only when X is connected.
Thus let Y be B(Σn, D,X). □

36



CHAPTER 3

Higher categories

1. Foundations

Definition 1.1. A simplicial set C is an ∞-category (or quasi-category) if it has inner horn filling — for all
0 < k < n, we have

Λk
n C

∆n

∃

We shall see that ∞-categories are fibrant objects in sSet with the Joyal model structure.

Example 1.2.

(1) If C is a Kan complex, then it is an ∞-category
(2) If C is a category, then NC is an ∞-category.

Definition 1.3. Given an ∞-category C, the objects of C are the vertices,1 the morphisms are 1-simplices.
We have source and target maps d1, d0 : C1 → C0.

2 We define the set of morphisms from X to Y as the
pullback

homC(X,Y ) C1

C1 C0 × C0.

⌟
(s,t)

(X,Y )

We have that homC(X,Y ) is the set of vertices of a simplicial set HomC(X,Y ), which forms a Kan
complex that we define later.

Definition 1.4. Given X ∈ C we define idX ∈ C1 by s0(X).

How do we compose? Composition won’t be unique, but it will be unique up to homotopy.

1X ∈ C means X ∈ C0
2We write f : X → Y in C to mean f ∈ C1 with s(f) = X and t(f) = Y .
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Given f : X → Y and g : Y → Z in C, this determines a map of simplicial sets Λ2
1 → C. By inner horn

lifting, we have

Λ2
1 C

∆2

We refer to the filling as a composition:

Y

X Z.

gf

h

Exercise 1.5. Given an ∞-category C, how can we define Cop? Would want that N(Cop) ∼= (NC)op.3

Detour: Let A ∈ Cat, and let C be a cocomplete category. Recall that Fun(Aop,Set) is the free
cocompletion. Given a functor A→ C, by universal property there is a map

A C

Fun(Aop,Set)

Q

|−|Q

This gives us an adjunction

| − |Q : Fun(Aop,Set) ⇄ C : SingQ(−).

Here SingQ(−) = HomC(Q(−), X).

Example 1.6. If C = Top, then we can take ∆Top : ∆→ Top, sending [n] to ∆n
Top. In this case, we recover

the usual | − | and Sing(−) adjunction.

Example 1.7. If C = Cat, there is a functor ∆→ Cat sending [n] to the associated poset category. We get
an associated adjunction:

τ : sSet ⇄ Cat : N,

since N = HomCat([−],C).

Exercise 1.8. Describe τ : sSet→ Cat explicitly.

We call τ the fundamental category functor, essentially it will produce the homotopy category of an
∞-category.

Definition 1.9. Given an ∞-category C, two morphisms f : X → Y and g : Y → Z are homotopic, written
f ≃ g, if there exists a 2-simplex σ : ∆2 → C with boundary (g, f, idX):

X

X Y.

gidX

f

Example 1.10. If C is an ordinary category, then in NC, we have that f ≃ g if and only if f = g.

Proposition 1.11. Given C an ∞-category, and X,Y ∈ C, the homotopy relation provides an equivalence
relation on homC(X,Y ).

Definition 1.12. We denote by [f ] the homotopy class of f .

3Every Kan complex has that Cop ∼= C.
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Sketch. We first need to show reflexivity, so we want to find a 2-cell witnessing

X

X Y.

f

f

We check that this is s0(f), where f ∈ C1, and s0 : C1 → C2.
For symmetry, suppose we have f ≃ g. We want to show g ≃ f . We can fill a Λ3

2 witnessing this.
Transitivity is left as an exercise. □

Definition 1.13. Given C an ∞-category, define the 1-category Ho(C) to be the homotopy category, given
by

ObHo(C) = C0

HomHo(C)(X,Y ) = homC(X,Y )/ ≃ .
In order to show this, we need to argue that composition is well-defined up to homotopy.

Suppose we have two compositions

Y

X Z.

gf

h1

Y

X Z.

gf

h2

We want to argue that h1 ≃ h2. This can be done by filling the horn of a 3-simplex.

Proposition 1.14. When we restrict the adjunction τ ⊣ N to ∞-categories, we get an adjunction

Ho(−) : Cat∞ ⇄ Cat : N.

The way to compose arrows is contractible.

Definition 1.15. The internal hom of simplicial set is given as follows. Given X and Y simplicial sets, we
define Hom•(X,Y ) as:

Hom•(X,Y ) = HomsSet(∆
• ×X,Y ).

Theorem 1.16. The inclusion Λ2
1 ↪−→ ∆2 induces a map

Hom∗(∆
2,C)→ Hom∗(Λ

2
1,C)

which is a trivial Kan fibration if and onlly if C is an ∞-category.

Proof. Here is the main idea. We need to show there is a lifting:

∂∆n Hom•(∆
2,C)

∆n Hom•(Λ
2
1,C).

∃

By adjunction, this is equivalent to have a lifting:

(∆n × Λ2
1)

∐
∂∆n×Λ2

1

(∂∆n ×∆2) C

∆n ×∆2

∃

This will follow from seeing that C is a fibrant object in model structure on sSet, and the left vertical map
is a trivial cofibration, because it is generated by inner anodyne Λn

i ↪→ ∆n cofibrations. □

Definition 1.17. An inner fibration in simplicial sets is a map which has the right lifting property with
respect to the inclusions Λn

i ↪→ ∆n.
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As a consequence, we can take a pullback diagram:

P Hom∗(∆
2,C)

∆0 Hom∗(Λ
2
1,C).

⌟

Then the pullback P → ∆0 should be a trivial fibration, meaning that P is a contractible Kan complex.

Definition 1.18. Given C an ∞-category and X,Y ∈ C, recall that a map f : X → Y corresponds to
∆1 → C whose faces are X and Y . An n-morphism from X to Y is simply a map ∆n → C such that
∆{0,...,n−1} = X and ∆{n} = Y .

For n ≥ 2, all n-morphisms are invertible in some sense.

Definition 1.19. Two objects X and Y in C are equivalent, written X ≃ Y , if there exists a 1-morphism
f : X → Y in C such that [f ] in Ho(C) is an isomorphism.

Definition 1.20. An ∞-groupoid is an ∞-category for which Ho(C) is a groupoid, meaning all the 1-
morphisms are equivalences.

Theorem 1.21. (Homotopy hypothesis) We get that C is an ∞-groupoid if and only if C is a Kan
complex.

Example 1.22. How to define the opposite Cop of an ∞-category? This is a good exercise to try on your
own first. Here is the solution. We can view ∆ as a subcategory of finite linear ordered sets Lin with
non-decreasing functions. This has an involution Lin → Lin which sends a poset (I,≤) to (I,≤op) where
i ≤op j whenever j ≤ i. This defines a similar functor op: ∆ → ∆ which is identity on object, and sends a
map α : [m] → [n] to op(α) : [m] → [n] defined as i 7→ n − α(m − i). Therefore, given a simplicial set X•,
we can define Xop

• by precomposing by the previous functor. Essentially, dopi = dn−i and s
op
i = sn−i. Doing

this for an ∞-category shows we switch source and target.

Proposition 1.23. If C is an ∞-category, then Cop is also an ∞-category.

Proof. Notice we have an isomorphism of simplicial sets (∆n)op ∼= ∆n and that sends (Λn
i )

op to
Λn
n−i. □

2. Equivalence of ∞-categories

What is the correct notion of an equivalence of∞-categories? Let us first see how the notion of opposite
is compatible with ordinary sense.

Proposition 2.1. Given C an ordinary category, then we obtain an isomorphism of simplicial sets N(C)op ∼=
N(Cop)

Proof. The string

X0
f1→ X1

f2→ · · · → Xn

is sent to

Xn
fop
n→ Xn−1

fop
n−1→ · · · → X0 □

Just as groupoids are equivalent to their opposite categories, the same should be true for ∞-groupoids.
This is first observed by the following result.

Proposition 2.2. Given X a topological space, then Sing(X) ∼= Sing(X)op as simplicial sets.

Proof. A n-simplex |∆n| → X is send to |∆n|
∼=→ |∆n| → X where the homeomorphism is defined via

(t0, t1, . . . , tn) 7→ (tn, tn−1, . . . , t0). □
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Therefore, given X a Kan complex, we obtain:

X Sing(|X|) Sing(|X|)op Xop.≃ ∼= ≃

Of course, isomorphism of simplicial sets is too strong of a notion for an equivalence of ∞-categories.
At most, we would want the notion to not be stronger on spaces: two Kan complexes that are equivalent as
homotopy-types should also be equivalent as ∞-categories.

Let us get inspired by ordinary categories. Two ordinary categories C and D are equivalent if a functor
F : C→ D induces an isomorphism of sets HomC(X,Y ) ∼= HomD(F (X), F (Y )) and D ∼= F (C) for all D ∈ D

for some C ∈ C. An easier way to generalize, is to have another functor G : D → C such that F ◦ G and
G ◦ F are equivalent in the functor categories to the identity functors. Let us also record the following.

Example 2.3. There is a canonical model structure on Cat where weak equivalences are given by equiva-
lences of categories, cofibrations are functors that are injective on objects, fibrations are isofibrations. An

isofibration is a functor p : C → D such that for all C ∈ C, for all isomorphism g : D
∼=→ D′ in D where

p(C) = D, there exists f : C → C ′ such that p(f) = g.

Definition 2.4. A functor of ∞-categories C→ D is a morphism of simplicial sets (i.e. a natural transfor-
mation).

This definition provides all the expectations of what a functor should do: preserve the choice of compo-
sitions, preserve equivalences, preserve identities, send n-morphisms to n-morphisms (exercise). Although
evident from the definition, it is crucial to keep in mind that it is not enough to define a functor by simply
assigning objects and 1-morphisms, we must also define on all higher morphisms.

Example 2.5. An ordinary functor C→ D defines a functor N(C)→ N(D) of ∞-categories.

Example 2.6. Given an ∞-category C and an ordinary category D, then the data of a functor C→ N(D)
is equivalent to a functor Ho(C)→ D.

Example 2.7. Given an equivalence f ≃ g in C, we obtain F (f) ≃ F (g) for any functor F : C → D, and
thus we obtain an ordinary functor F : Ho(C)→ Ho(D).

Example 2.8. Given C an ∞-category, and X a topological space, a functor C→ Sing(X) is equivalent to
a continuous map |C| → X.

Definition 2.9. A diagram in an ∞-category is a morphism of simplicial sets K• → C, where K• is any
simplicial set.

Example 2.10. A diagram ∆1 ×∆1 → C makes sense of a commutative diagram:

• •

• •

As hint of what the ∞-category of functors of ∞-categories, we have the following.

Example 2.11. We have an isomorphism of simplicial sets:

N(Fun(C,D)) ∼= Hom•(N(C), N(D)).

Theorem 2.12. Given K a simplicial set, C an ∞-category, then Hom•(K,C) is an ∞-category.

Proof. Notice that Hom•(K,−) preserves trivial Kan fibrations (because sSet with Kan model structure
is a monoidal model category). Therefore, as C is an ∞-category, by Theorem 1.16, we obtain:

Hom•(K,Hom•(∆
2,C)) −→ Hom•(K,Hom•(Λ

2
1,C))

which by symmetry, is equivalent to trivial Kan fibration:

Hom•(∆
2,Hom•(K,C)) −→ Hom•(Λ

2
1,Hom•(K,C))

We conclude by Theorem 1.16 again. □
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Definition 2.13. Given an ∞-category C, and a simplicial set K, we denote by Fun(K,C) the ∞-category
Hom•(K,C).

Definition 2.14. A natural transformation between functors C → D is a morphism in Fun(C,D), i.e. a
map of simplicial sets ∆1 × C→ D.

Definition 2.15. Given C an ∞-category, define C≃ to be the maximal ∞-groupoid of C: the subsimplicial
set for which n-simplices carry edges to equivalences in C.

Example 2.16. For C an ordinary category, we have an isomorphism of simplcial sets N(C
∼=) ∼= N(C)≃.

Exercise: Show C≃ is indeed a Kan complex.

Definition 2.17. The homotopy category of ∞-categories hQCat is the category for which objects are
∞-categories and for which the hom sets are the equivalence classes of functors:

HomhQCat(C,D) = π0(Fun(C,D)≃).

We obtain an adjunction:

hTop hQCat.⊥
(−)≃

Definition 2.18. A functor F : C→ D is an equivalence of ∞-categories if it is an isomorphism in hQCat.

Example 2.19. Let C and D be ordinary categories. A functor C → D is an equivalence of categories if
and only if N(C)→ N(D) is an equivalence of ∞-categories.

Example 2.20. Given X and Y are Kan complexes, then X → Y is a simplicial homotopy equivalence if
and only if it is an equivalence of ∞-categories.

Remark 2.21. Given C and D are ∞-categories, if C → D is an equivalence of ∞-categories, then it is a
simplicial homotopy equivalence. However, the converse is not true.

Example 2.22. If C→ D is an equivalence of ∞-categories, where D is actually a Kan complex, then C is
also a Kan complex.

Definition 2.23. The Joyal model structure on sSet can be defined as follows. The fibrant objects are ∞-
categories, the weak equivalences on fibrant objects are precisely the equivalence of∞-categories, cofibrations
are monomorphisms, fibrations are isofibrations (inner fibrations with identical property than ordinary case).
We obtain a Quillen adjunction between the two model structures:

sSetJoyal sSetKan.⊥

Last time: Recall that a 1-morphism in Fun(C,D)4 is precisely a natural transformation η : F → G,
where F,G : C→ D. In other words, it is η : ∆1 × C→ D.

We have hQCat = Ho(Cat∞), where objects are infinity categories, and the morphisms are

HomhQCat(C,D) = π0 (Fun(C,D)≃) .

That is, it is the set of equivalence classes of functors C→ D.
If C is an ∞-category, and X,Y ∈ C, we defined HomC(X,Y )• to be the simplicial set given by the

pullback

HomC(X,Y )• Fun(∆1,C)

∆0 Fun({0} ,C)• × Fun({1} ,C).

⌟

Proposition 2.24. We have that HomC(X,Y ) ∈ Kan.

4The simplicial set Fun(∆• × C,D)
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Sketch. This follows from a more general fact that for A ↪−→ B a subsimplicial set with A0 = B0, and
C an ∞-category, then P is always a Kan complex

P Fun(B,C)

∆0 Fun(A,C).

⌟

f

Need to show that every u in Fun(B,C)1 in the pullback is a weak equivalence. We have an evaluation
map for every b ∈ B0 = A0, given by evb : Fun(B,C) → Fun({b} ,C), mapping u to uf(b). We claim that
uf(b) = idf(b), since the diagram commutes

Fun(B,C) Fun({b} ,C)

Fun(A,C)

□

Example 2.25. Given f ≃ g in an∞-category C, they must belong in same path component of HomC(X,Y ),
and so HomHo(C)(X,Y ) ∼= π0(HomC(X,Y )).

Theorem 2.26. A functor F : C→ D is an equivalence of ∞-categories if and only if we have both:

• weak homotopy equivalence HomC(X,Y )
∼→ HomD(F (X), F (Y )) for all objects X,Y ∈ C;

• π0(C≃)→ π0(D
≃) is surjective.

3. Adjoint functors

Definition 3.1. Let F : C → D, and G : D → C be functors of ∞-categories. We say that F ⊣ G if there
exist natural transformations η : idC → GF ad ϵ : FG→ idD so that:

(1) there exists ∆2 → Fun(C,D) witnessing

FGF

F idC idCF.

ϵidFidCη

id

(2) there exists ∆2 → Fun(D,C) witnessing

GFG

idCG GidC.

idϵηid

id

Remark 3.2. We have that η : id → GF depends only on [η] in Ho(Fun(C,D)). If η is given, then ϵ is
unique up to homotopy.

Example 3.3. If C and D are ordinary categories, then we have a 1-categorical adjunction

F : C ⇄ D : G

if and only if we have an ∞-categorical adjunction

NF : NC ⇄ ND : NG.

Example 3.4. If X,Y ∈ Kan, then F : X → Y is an adjoint if and only if F is a homotopy equivalence of
simplicial sets. The unit and counit become the witnesses of homotopy equivalence.

Remark 3.5. If we have an adjunction F : C ⇄ D : G of ∞-categories, then F and G are homotopy
equivalences of simplicial sets. The converse is not true in general.

Exercise 3.6. If F : C→ D is an equivalence of∞-categories, then it is both a left and right adjoint functor.

43



Proposition 3.7. Given F : C ⇄ D : G of ∞-categories, then

Ho(F ) : Ho(C) ⇄ Ho(D) : Ho(G)

is an adjunction of 1-categories. That is, if we know F ⊣ G in ∞-categories, then to check if η : idC → GF
is a unit, it is enough to check that Ho(η) is the unit.

However the converse is not true!
Warning: Suppose we take F : ∆0 → X with X ∈ Kan simply connected, and F picks x ∈ X0. Then

Ho(F ) ⊣ Ho(G) because Ho(X) will be simply connected. But it does not imply that F ⊣ G unless X is
contractible.

There HomHo(D)(FC,D) ∼= HomHo(C)(C,GD) for any C ∈ C and D ∈ D.

Theorem 3.8. Take F : C → D and G : D → C functors of ∞-categories. Then F ⊣ G with unit η if
and only if the composite

HomD(FC,D)
G−→ HomC(GFC,GD)

η∗

−→ HomC(C,GD)

is a weak homotopy equivalence between Kan complexes (aka a homotopy equivalence) for all C,D.

The forward direction is straightforward, but the backwards direction uses (co)cartesian fibration stuff.

4. Limits and colimits

Recall that if C is an ordinary category, then i ∈ C is initial if for all X ∈ C, there is a unique i
!−→ X.

That is, HomC(i,X) = ∗.

Definition 4.1. In an ∞-category C, we have that i ∈ C is initial if HomC(i,X) ≃ ∗ is contractible for all
X ∈ C.

Definition 4.2. Let C be an ∞-category, and K• ∈ sSet. Then for any X ∈ C, denote by X ∈ Fun(K,C)
the constant functor valued at X. The assignment X 7→ X defines a diagonal map

∆ : C→ Fun(K,C).

This is defined by precomposing with K → ∆0, and looking at C ≃ Fun(∆0,C)→ Fun(K,C).

Definition 4.3. Let u : K → C be a diagram. We say a natural transformation α : L → u exhibits L ∈ C

as a limit of u if for all X ∈ C, we have that the composite

HomC(X,L)
∆−→ HomFun(K,C)(X,L)

α∗−−→ HomFun(K,C)(X,u)

is a (weak) homotopy equivalence of Kan complexes.

Definition 4.4. We say that β : u→ C exhibits C as a colimit of u if, for all Y ∈ C, the composite

HomC(C, Y )
∆−→ HomFun(K,C)(C, Y )

β∗

−→ HomFun(K,C)(u,C)

is a (weak) homotopy equivalence.

Note that if α or β exist, they are unique up to equivalence.

Example 4.5. If C is an ordinary category, then u : K → NC is equivalent to a map τ(u) : τK → C. We
can check that L ∈ C is lim(τu) in a 1-categorical sense if and only if L ∈ C is a limit of u in an∞-categorical
sense.

Example 4.6. Let f : X → Y in an ∞-cat C. Then f is an equivalence if and only if f exhibits Y as a
colimit {X} → C, if and only if f exhibits X as a limit {Y } → C.

Example 4.7. Taking the identity diagram ∅ → C, the notion of limit/colimit matches the notion of
terminal/initial object.

Proposition 4.8. A limit L ∈ C is unique up to homotopy. Therefore we usually define it as limK(u).
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Proposition 4.9. We have that C admits all K-indexed limits if and only if

∆ : C→ Fun(K,C)

is a left adjoint. The right adjoint is given by limK(−).

Equalizers are limits along ∆1 ⨿∂∆1 ∆1, pullbacks are limits along ∆1 ×∆1 − (0, 0), etc.

5. Localization

Definition 5.1. Let C and D be ∞-categories. Let W be a collection of edges in C, with no further
assumption. Denote by FunW (C,D) the full subcategory of Fun(C,D) spanned by functors F : C→ D that
carry edges of W into equivalences in D. Formally, this is the pullback in sSet:

FunW (C,D) Fun(C,D)

Fun(W,D≃) Fun(W,D).

A localization of C with respect to W is an ∞-category C[W−1] together with a functor γ : C → C[W−1]
satisfying the following universal property. For any ∞-category D, the functor γ induces an equivalence of
∞-categories:

γ∗ : Fun(C[W−1],D)
≃−→ FunW (C,D).

The definition can be extended to any simplicial set C, not necessarily an ∞-category.

The functor hQCat→ Set that is defined by:

D 7→ π0(FunW (C,D)≃) = π0(Fun(C[W
−1],D)≃) = HomhQCat(C[W

−1],D)

is corepresented by C[W−1] and is thus unique up to isomorphism in hQCat, i.e. is unique up to equivalence
of ∞-categories (if it exists).

Theorem 5.2. The localization γ : C→ C[W−1] always exists.

Before proving this, let us notice the following.

Example 5.3. LetW ⊆ ∆1 be the unique non-degenerate 1-simplex. Then ∆1[W−1] = ∆0 and γ : ∆1 → ∆0

is the localization. Indeed:

D ≃ Fun(∆0,D)
≃→ FunW (∆1,D) = Eq(D)

where Eq(D) are the equivalences in D, defined on object X to idX , is a trivial Kan fibration.

This observation can be extended to following.
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Lemma 5.4. Let Q be a contractible Kan complex. Let e : ∆1 ↪→ Q be a monomorphism in sSet. Let
W ⊆ ∆1 be the unique non-degenerate 1-simplex. Then there is an equivalence of ∞-categories:

Fun(Q,D)
≃→ FunW (∆1,D) = Eq(D).

Proof. Exercise. □

Proof of Theorem 5.2. Let F : C→ D be in FunW (C,D). For all w ∈ W , this defines F (w) : ∆1 →
D≃. Factor this morphism in the model category sSetKan:

∆1 D≃

Qw

F (w)

∼
qw

By construction, Qw is a contractible Kan complex. We can consider the following pushout in sSet:∐
w∈W

∆1 C

∐
w∈W

Qw C′

D

∼ γ′

G

∃

Given any ∞-category D fitting into the diagram above, notice G(w) ∈ D≃ by commutativity. Therefore
the induced map by γ′:

Fun(C′,D) −→ FunW (C,D)

is an equivalence of ∞-categories. Indeed in the diagram:

Fun(C′,D) FunW (C,D) Fun(C,D)

∏
w∈W

Fun(Qw,D)
∏

w∈W
Eq(D)

∏
w∈W Fun(∆1,D)

the right square is a pullback by definition of FunW (C,D), the outer rectangle is a pullback since Fun(−,D)
sends pushout to pullbacks. Therefore, the left square is a pullback. However, by the lemma, we know the
left bottom map is a trivial Kan fibration, therefore the top left map is a trivial Kan fibration. Thus γ′

defines an equivalence of ∞-categories as desired. We force now C′ to be an ∞-category by performing a
factorization in sSetJoyal on C′ → D with a trivial cofibration and followed by fibration, which thus defines
C[W−1] with same property as C′. □

We can have a better descriptio of C[W−1] when we have more assumption on W .

Definition 5.5. Let C be an ∞-category and W a collection of edges in C. We say Z ∈ C is W -local if for
all w : X → Y in W , we have a weak homotopy equivalence:

HomC(Y,Z)
≃→ HomC(X,Z).

We say W is localizing if:

• equivalences in C are in W ;
• W satisfy 2-out-of-3;
• for all Y ∈ C, there exists w : Y → Z in W such that Z is W -local.

Remark 5.6. If w : X → Y in W , X and Y are W -local, then w must be an equivalence.
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Theorem 5.7. Suppose C is an ∞-category with W is localizing collection of edges, then C[W−1] can
be defined as the full subcategory spanned by the W -local objects and γ : C→ C[W−1] is a left adjoint:

C C[W−1]
γ

⊥

Proof. This follows by the previous remark and the universal property of C[W−1]. Give X ∈ C, one
can define informally γ(X) by a choice of a map w : X → Y where Y is W -local, and given X → X ′ in C,
we can define a map γ(X)→ γ(X ′):

X X ′

γ(X) γ(X ′).

∈W ∈W

and using the 2-out-of-3 property it is an equivalence whenever X → X ′ is in W . □

Definition 5.8. Let M be a model category with W as class of weak equivalences. The Dwyer–Kan
localization ofM withW is the∞-categoryN(M)[W−1] together with the localizationN(M)→ N(M)[W−1].
This is sometimes referred as the underlying ∞-category of M.

Remark 5.9. If M admits functorial fibrant and cofibrant replace, then:

N(Mc)[W
−1] ≃ N(Mf )[W

−1] ≃ N(Mcf )[W
−1] ≃ N(M)[W−1].

How should one think of N(M)[W−1]? Its objects are the objects in M, but considered up to weak
equivalence, the edges X → Y are elements in HomM(X,Y )/ ≃, the composition:

Y

X Z,

is defined up to weak equivalence. In particular, every morphism can be considered to be a cofibration or
a fibration. The homotopy relation in N(M)[W−1] is the same as defined in model categories. Notably, we
obtain an equivalence of categories:

Ho(N(M)[W−1]) ≃ Ho(M).

Example 5.10. The ∞-category of spaces S, i.e. the ∞-category of ∞-groupoids, is defined as the Dwyer–
Kan localization N(sSet)[W−1Kan], and is denoted S.

Example 5.11. The (large)∞-category of∞-categories is defined as the Dwyer–Kan localizationN(sSet)[W−1Joyal]
and is denoted Cat∞.

Example 5.12. LetR be a commutative ring. DenoteD(R) to the Dwyer–Kan localization ofN(ChR)[W
−1
proj].

Theorem 5.13 (HA 1.3.4.20). If M is a combinatorial model category, then it is Quilllen equivalent to

a simplicial model category M̃ and N(M)[W−1] is equivalent to the homotopy coherent nerve of M̃cf .

Remark 5.14. If M is a simplicial model category, we can define M[W−1] as a the hammock localization.

Definition 5.15. An ∞-category C is said to be compact if π0(C
≃) is compact as a set (i.e. small), and

πi(HomC(X,Y )) are compact as sets.

Definition 5.16. An object X ∈ C is compact if HomC(X,−) : C→ S preserves filtered colimits.

Remark 5.17. An ∞-category C is compact if and only if it is compact as an object in Cat∞.

Definition 5.18. An ∞-category C is said to be presentable if it has filtered colimits, and there exists an
essentially small ∞-category P ⊆ C comprised of compact objects which generates C under filtered colimits.

Proposition 5.19. An ∞-category C is presentable if and only if C is equivalent to FunW (Pop, S) for some
small category P and some set of maps W in Fun(Pop, S).
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Theorem 5.20. Let C be an∞-category. Then C is presentable if and only if there exists a combinatorial
model category M such that C ≃ N(M)[W−1].

Presentable ∞-categories are combinatorial model categories.

Theorem 5.21. Let M be a combinatorial model category. Let J be a small category. Recall we can
give Fun(J,M) the projective and injective model structures, both with weak equivalence defined levelwise.
Evaluation J × Fun(J,M) → M lifts to a map N(J) × N(Fun(J,M)) → N(M) that induce an equivalence
of ∞-categories:

N(Fun(J,M))[W−1Fun]
≃−→ Fun(N(J), N(M)[W−1]).

Proof. Universal property. □

Theorem 5.22. Given a left Quillen functor F : M1 →M2 between combinatorial model categories with
weak equivalence classes denoted W1 and W2 respectively. Then the total left derived functor LF induces a
functor on the Dwyer–Kan localizations:

LF : N(M1)[W
−1
1 ] −→ N(M2)[W

−1
2 ]

that is a left adjoint.

Corollary 5.23. Let M be a combinatorial model category. Then colimits in N(M)[W−1] correspond
precisely to homotopy colimits in M. Similarly, limits in N(M)[W−1] correspond precisely to homotopy
limits in M.

6. Straightening/unstraightening— Higher categorical Grothendieck construction

Motivation: Let X be a space, and let Cov(X) denote the 1-category of covering spaces of X, so that
in particular the fibers f−1 of f : E → X are discrete sets. This defines a map in Top from

X → Set
∼=,

to sets with the discrete topology. Another way to think about this is as a functor

St : Cov(X)→ Fun(Π1(X),Set)

(E
p−→ X) 7→

[
x 7→ f−1(x)

]
.

A path from x to y (a morphism in Π1(X)) induces a set map f−1(x)→ f−1(y).
This is an equivalence of categories! This is called the fundamental theorem of covering spaces.
This is a first instance of straightening.
If we view X as an ∞-groupoid, then Π1(X) = Ho(X) is its homotopy category, and we have that

Fun(Π1(X),Set) ∼= Fun(X,N(Set)),
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since nerve is right adjoint to the homotopy category.
We can denote by CovX ⊆ S/X to be the full subcategory of the infinity category of spaces over X

spanned by covering spaces. Then we want to show that

CovX ≃ Fun(X,N(Set)).

We have an unstraightening functor

Unst : Fun(X,N(Set))→ CovX ,

given by sending some F : X → N(Set) to the pullback5

E N(Set∗)
≃

X N(Set)≃
F

More generally, if we don’t require the fibers to be discrete, then we can take f : E → X to be any
continuous map. Then we get a functor6

St : S/X → Fun(X, S)

(E
f−→ X) 7→

[
x 7→ f−1(x)

]
.

Unstraightening is of the form

Unst : Fun(X, S)→ S/X

F 7→ hocolimXF = ∪x∈XF−1(x)/ ∼ .
Let X be connected and suppose X ≃ BG. Then we define G-modules in spaces to be

ModG(S) := Fun(BG, S)
∼−→ S/BG.

If we take some M : BG→ S, and we post-compose with sections S/BG→ S, then M maps to MhG.
More generally, given F : X → S, the limit limX S is given by

Fun(X, S)
Unst−−−→ S/X

sections−−−−−→ S.

Goal: Generalize this approach where X is replaced by an ∞-category C and S is replaced by Cat∞.
That is, we want to relate Fun(C,Cat∞) with some subcategory of Cat∞/C.

If f : E→ C, what requirement do we need to make sense of an associated functor

F : C→ Cat∞

X 7→ f−1(X).

That is, how can we coherently choose our fibers.
Given X ∈ C, we could take a pullback in Cat∞:

f−1(X) E

∆0 C.

⌟

X

If we choose sSetJoyal as our model, we would need E → C to be an inner fibration (RLP wrto inner
horns) to get the pullback f−1(X) to be a quasi-category. If we instead say “pullback in quasi-categories,”
this requirement goes away.

Given f : E→ C and X → Y in C, how can we define f−1(X)→ f−1(Y ) in Cat∞?
Need: If ϕ : X → Y in C and EX ∈ E such that f(EX) = X, then there exists some EY ∈ E and

ϕ! : EX → EY in E so that f(ϕ!) = ϕ, and that is universal in the following sense: for all Z ∈ C and for all

5Note that N(Set≃) = N(Set)≃.
6By Fun(X, S) we might mean Fun(Sing(X), N∆(Kan)).
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ψ : X → Z in C for all ψ̄ : EX → EZ in E where f(ψ̄) = ψ, if there exists γ : Y → Z then there exists a
unique map γ̄ : EY → EZ in E so that f(γ̄) = γ and γ̄ ◦ ϕ! = ψ̄.

We say that ϕ! : EX → EY is a cocartesian lift of ϕ.

Definition 6.1. We say that f : E → C is a cocartesian fibration if for all EX ∈ E, for all ϕ : X → Y with
f(EX) = X, there exists a cocartesian lift of ϕ.

Two cocartesian lifts over the same map are equivalent.
Given f : E→ C, X ∈ C, ϕ : X → Y in C, we say ϕ! : EX → EY is a cocartesian lift if the following is a

pullback diagram in spaces:

HomE(EY , EZ) HomC(EX , EZ)

HomC(Y,Z) HomC(X,Z),

(ϕ!)
∗

f
⌟

f

ϕ∗

for any Z ∈ C. In particular, taking maps from ∆0 to the top right and bottom left picks out ψ̄ and γ,
respectively, so that γ ◦ϕ = ψ, and the universal property of the pullback says that there exists γ̄ : EY → EZ

so that γ̄ϕ! = ψ̄ and f(γ̄) = γ.

Definition 6.2. We define coCart(C) ⊆ Cat∞/C to be the subcategory of cocartesian fibrations E → C,
with morphisms

E E′

C,

G

f f ′

so that G sends f -cocartesian lifts to f ′-cocartesian lifts.

In this case, straightening defines a functor

St : coCart(C)→ Fun(C,Cat∞),

sending f : E→ C to the functor

C→ Cat∞

X 7→ f−1(X)

(X
ϕ−→ Y ) 7→

[
f−1(X)

ϕ!−→ f−1(Y )
]
.

Example 6.3. Let f : X → Y in S. All lifts are cocartesian lifts. We say that a left fibration is a cocartesian
fibration where every lift is cocartesian.

Example 6.4. Suppose C is an ordinary category. Then we can define a new category whose objects are
f : X → Y in C, and whose morphisms are

X Y

X ′ Y ′.

f

vu

f ′

This defines what we call the twisted arrow category Tw(C). There is a natural functor

Tw(C)
Ev−−→ Cop × C

(X
f−→ Y ) 7→ (X,Y ).

This is a left fibration, by composition. Straightening this, we get

St(Ev) : Cop × C→ Set

(X,Y ) 7→ Ev−1(X,Y ) = HomC(X,Y ).
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Example 6.5. If C is an ∞-category, we can define a twisted arrow category in a similar way

Tw(C) : ∆op → Set

[n] 7→ HomsSet(∆
2n+1,C),

where the n-simplices of Tw(C) should be thought of as

X0 X1 X2 · · · Xn

Y0 Y1 Y2 · · · Yn.

We can define

ℓ : Tw(C)→ Cop

r : Tw(C)→ C,

by precomposition with ∆n ↪−→ ∆2n+1. These assemble to give

Tw(C)
Ev−−→ Cop × C,

and we have HomC(X,Y ) = Ev−1(X,Y ) ∈ S. This evaluation map is a left fibration, left fibrations are
preserved under pullback, and left fibrations over ∆0 are Kan complexes. Therefore Ev−1(X) is a space.

Example 6.6. Let X ∈ C. Then we can take

ℓ−1(X) Tw(C)

∆0 Cop.

⌟
ℓ

X

We define CX/ := ℓ−1(X), and r−1(Y ) := C/Y .

Theorem 6.7. (Straightening/unstraightening) If C is an ∞-category, we can define its unstraightening
as

Unst : Fun(C,Cat∞)→ coCart(C)

F 7→ colim

(
Tw(C)

Ev−−→ Cop × C
C/·×F−−−−→ Cat∞

)
.
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That composite sends

Tw(C)
Ev−−→ Cop × C

C/·×F−−−−→ Cat∞

(X
f−→ Y ) 7→ CX/ × F (Y ).

This forms an equivalence with St.

There is an equivalence

St : LFib(C) ⇆ Fun(C, S) : Unst.

If C = X ∈ S, then coCart(X) = Cat∞/X.
If C = N(D), this recovers the usual Grothendieck construction.
If F : C→ Cat∞, then

colimF = Unst(C)[cocart. edges−1]
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CHAPTER 4

Higher algebraic structures

1. Unstraightening multiplications

Recall S ≃ N(sSet)[W−1Kan] the ∞-category of spaces. When we say X → Y is a map in S we mean that
X → Y is a map in Ho(sSet) not that X → Y is any map in sSet.

Example 1.1. If we have X → Y in S, then X → Y is a left fibration. If X and Y are in Kan and X → Y
this does not imply that X → Y must be a left fibration. What is true is that if X → Y is a Kan fibration,
then X → Y is a left fibration.

We have Cat∞ ≃ N(sSet)[W−1Joyal], so f : C→ D in Cat∞ means

f−1(X) C

∆0 D.

⌟

X

So we always want it to be a fibration.
That is, a map f : C→ D in Cat∞ is not the same as C→ D of quasi-categories in sSet.
In Cat∞, C→ D is a cocartesian fibration if there exists a cocartesian lift on any fiber.
If C,D are quasi-categories in sSetJoyal, then f : C→ D is a cocartesian fibration if f is an inner fibration

(RLP inner horns) AND there is a cocartesian lift of any fiber. The inner fibration condition guarantees
that the fibers are also infinity categories.

Straightening definition last time was wrong. Last time, we had

Unst : Fun(C,Cat∞)
∼−→ coCart(C)

F 7→
(
E

Unst(F )−−−−−→ C

)
.

is an equivalence of categories, where

E = colim

(
Tw(C)op → C× Cop F×C•/−−−−→ Cat∞

)
.

Example 1.2. Take C = ∗. Then Fun(∗,Cat∞) = Cat∞. We have that coCart(∗) = Cat∞, and that
Tw(∗) = ∗op = ∗. The composite sends

Tw(∗)op → ∗× ∗op → Cat∞

∗ 7→ (∗, ∗) 7→ ∗A× ∗ = A.

Example 1.3. Take C = 1 = 0→ 1. A functor F : 1→ Cat∞ is exactly a functor F : A→ D in Cat∞. We
see that Tw(1) has three objects, being 0 = 0, 0→ 1 and 1 = 1. The identity ones both map to 0→ 1 so it
is a span-op category. When we op Tw(1)op we get the span category, so a colimit becomes a pushout. We
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see that 10/ = 1 and 11/ = ∗. Then

E = colim


A× 11/ A× 10/

B× 11/

id×(0→1)

F×id



= colim


A A× 1

B

id×1


Then E is a cocartesian fibration over 1, whose fiber over 0 is A, whose fiber over 1 is B, and with maps
F (A)→ B over 0→ 1.

Goal: Redefine a symmetric monoidal category (C,⊗, I) as a cocartesian fibration C⊗ → Fin∗ as certain
“pseudo”functors Fin∗ → Cat. We could take Fin∗ → Cat sending ⟨n⟩ to C×n.

Q: Given a psuedofunctor F : Fin∗ → Cat, when is it defining a symmetric monoidal category?
We would need F (⟨n⟩) ∼= F (⟨1⟩)×n with Segal’s condition F (⟨0⟩) = 0.

Theorem 1.4. Symmetric monoidal categories are pseudofunctors Fin∗ → Cat with the Segal condition.

2. Algebras

Last time we defined a symmetric monoidal infinity category to be a cocartesian fibration over Fin∗ with
a Segal condition. Here C = f−1(⟨1⟩). We got this by straightening N(Fin∗)→ Cat∞, with ⟨n⟩ 7→ C⊗n.

Suppose we had a natural transformation η between functors

C,D : N(Fin∗)→ Cat∞.

This corresponds to a map C⊗ → D⊗ over Fin∗ sending p-cocartesian lifts to q-cocartesian lifts:

C⊗ D⊗

N(Fin∗).

p q

Think about this as F (X)⊗ F (Y )
∼−→ F (X ⊗ Y ).

Now suppose we have F⊗ : C⊗ → D⊗ between symmetric monoidal ∞-categories. Then we know the
fiber over ⟨1⟩ must be sent to the fiber over ⟨1⟩. Then we get F⊗⟨n⟩ : C

⊗
⟨n⟩ → D⊗⟨n⟩ for all n.

Denote F = F⊗⟨1⟩. Then F
⊗
⟨n⟩ ≃ F

×n.

Let ρi! : ⟨n⟩ → ⟨1⟩ send everything to 0 except i to 1.

C⊗⟨2⟩ D⊗⟨2⟩

C× C D×D.

F⊗
⟨2⟩

(ρ1
! ,ρ

2
! ) (ρ1

! ,ρ
2
! )

F×F

F (ρ1! ) ≃ ρ1! and F (ρ2! ) ≃ ρ2! . For all i we need that F (ρi!) is a q-cocartesian lift of ρi. This means that
for all n, F⊗⟨n⟩(X1, . . . , Xn) ≃ (F (X1), . . . , F (Xn)).

Definition 2.1. A map α : ⟨n⟩ → ⟨k⟩ in Fin∗ is inert if α−1(i) is precisely a singleton for 1 ≤ i ≤ n.
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Fact 2.2. Inert morphisms are generated by ρi and τ (here τ is the swap of 1 and 2 on ⟨2⟩).
Let F⊗ : C⊗ → D⊗ that sends p-cocartesian lifts of inert maps to q-cocartesian lifts. We claim this

already gives a lax monoidal structure. Considerm : ⟨2⟩ → ⟨1⟩ the multiplication, and consider (X,Y ) ∈ C×2.
There is a map m! : C× C→ C sending (X,Y ) 7→ X ⊗ Y .

F (X)⊗ F (Y )

(F (X), F (Y )) F (X ⊗ Y ).

m!

F (m!)

Note we’re not saying that F (m!) is a cocartesian lift, we’re saying that m! is. If F (m!) was a cocartesian
lift, then this would give F (X)⊗ F (Y )→ F (X ⊗ Y ) is an equivalence.

Exercise 2.3. Show that ι : ⟨0⟩ → ⟨1⟩ induces ID → F (IC).

Definition 2.4. For C⊗ and D⊗ symmetric monoidal ∞-categories, a lax symmetric monoidal functor
F⊗ : C⊗ → D⊗ is a functor that sends lifts of p-cocartesian inert maps in Fin∗ to q-cocartesian lifts.

Definition 2.5. We say F⊗ is strong symmetric monoidal if it sends all p-cocartesian lifts to q-cocartesian
lifts.

We can define

FunN(Fin∗)(C
⊗,D⊗) Fun(C⊗,D⊗)

∆0 Fun(C⊗,Fin∗).

⌟
q∗

p

Define Fun⊗,lax(C⊗,D⊗) to be the full subcategory of lax monoidal functors, and just Fun⊗(C⊗,D⊗) the
full subcategory of strong monoidal functors.

Example 2.6. Commutative algebras. We have that ∆0 is a symmetric monoidal ∞-category with trivial
structure, then we have

N(Fin∗)→ Cat∞

sending everything to ∆0. The associated cocartesian fibration is N(Fin∗)→ N(Fin∗).

We define Alg∞(C) to be Fun⊗,lax(N(Fin∗),C). That is,

N(Fin∗) C⊗

N(Fin∗)

A⊗

p

That is, A⊗ is a section of p that sends inert maps in Fin∗ to p-cocartesian lifts. We have that A⊗(⟨1⟩) ∈
C⊗⟨1⟩ = C, and A⊗A→ A. We have that A⊗(⟨0⟩) = I.

Q: Can we localize a symmetric monoidal category in such a way that it preserves the symmetric
monoidal structure?

Definition 2.7. (HA 4.1.7.4) Given C⊗ a symmetric monoidal ∞-category, let W ⊆ C a collection of edges.
Assume W is closed under ⊗ (meaning that if Y → Y ′ is in W , and X is arbitrary, then X ⊗ Y → X ⊗ Y ′
and Y ⊗X → Y ′⊗X are in W as well). The symmetric monoidal localization of C⊗ with W is a symmetric
monoidal ∞-category C[W−1]⊗ together with a strong symmetric monoidal functor

ℓ : C⊗ → C[W−1]⊗

with the following universal property: for any symmetric monoidal ∞-category D⊗, we get an equivalence
of ∞-categories:

Fun⊗(C[W−1]⊗,D⊗)
∼−→ Fun⊗W (C⊗,D⊗),

where FunW (−) means sending W to equivalences.
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This always exists. We have that C[W−1]⟨1⟩ ≃ C[W−1]. In terms of cocartesian fibrations it is maybe(?)
some kind of Kan extension

C Fin∗

C[W−1]

?

Definition 2.8. Let (M,⊗, I) be a symm mon model category (with functorial cofibrant replacement).
Suppose I is cofibrant. Then the Dwyer-Kan localization N(M)[W−1] can be given a symmetric monoidal
∞-structure as follows:

• Take the cofibrant objects Mc

• Take the category of operators M⊗c as an ordinary category (objects are pairs ⟨n⟩ , c1, . . . , cn) and
morphisms are ⊗ici → c′j over Fin∗

• N(M⊗c ) is a symmetric monoidal ∞-category, with class W of edges in N(Mc)
• Recall that X ⊗ − : Mc → Mc preserves weak equivalences between cofibrant objects, under the
hypothesis that X is cofibrant.

• Thus N(M⊗c )→ N(Mc)[W
−1]⊗ is called the symmetric monoidal Dwyer-Kan localization.

This gives a sym mon structure on the ∞-category N(M)[W−1] ≃ N(Mc)[W
−1].

This shows that the derived tensor product ⊗ of a monoidal model category M endows N(M)[W−1]
with a monoidal structure.

Example 2.9. Spaces S have a symmetric monoidal ∞-category structure, since we can view them as
N(sSet)[W−1Kan] with the cartesian product. Here AlgE∞

(S) are equivalent to E∞-algebras in spaces.

Example 2.10. We have that Cat∞ ≃ N(sSet)[W−1Joyal] with the cartesian product. Then AlgE∞
(Cat∞)

are symmetric monoidal ∞-categories. This is exactly because AlgE∞
(Cat∞) = Fun⊗,lax(N(Fin∗),Cat∞)

which guarantees the Segal condition.

Example 2.11. If R is a commutative ring, then D(R) ≃ ChR[W
−1
proj] is a symmetric monoidal ∞-category.

The injective model structure does not give you a monoidal model category.
We also have the connective case with two models

D≥0(R) ≃ N(sModR)[W
−1] ≃ N(Ch≥0R )[W−1].

Every symmetric monoidal ∞-category C⊗ which is presentable and for which ⊗ preserves colimits is
the symmetric monoidal DK localization of a combinatorial monoidal model category (Lurie-Sagave).

3. Stable ∞-categories

Universal property for S (spaces). Given K ∈ sSet, there is a Yoneda embedding

K ↪−→ Fun(Kop, S) =: P(K),

which is the adjoint of “internal hom”1

Kop ×K → S.

Given C an ∞-category, we can call P(C) the universal cocompletion of C. That is, for all D cocomplete,
there is an equivalence

FunL(P(C),D)
∼−→ Fun(C,D),

where L denotes colimit-preserving functors.2

If we choose C = ∆0, we get

FunL(S,D) = Fun(∆0,D) = D.

1K isn’t necessarily an ∞-category, so it doesn’t make sense to have internal hom, but this is the straightening of Tw(K) →
Kop ×K which is always well-defined.

2For presentable ∞-categories, being a left adjoint is equivalent to preserving colimits, hence the superscript “L”
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Hence we can think of S as the “free cocompletion of ∆0.” Just as a set can be viewed as a union of its
points, we can think of any cocomplete ∞-category as gluing its paths together.

Definition 3.1. An ∞-category is pointed if it has an object with is both initial and terminal. That is,
some 0 ∈ C so that

HomC(0, X) ≃ ∗ ≃ HomC(X, 0)

for any X ∈ C.

Example 3.2. If C is an ∞-category and ∗ ∈ C is a terminal object, we can define

C∗ := C∗/.

This will be pointed and we will have an adjunction

(−)+ : C ⇆ C∗.

For example, we have

S ⇆ S∗ = N(sSet∗)[W
−1
Kan].

If C is a pointed presentable stable ∞-category, then

FunL(S∗,C) ≃ C.

Here S∗ is the free presentable pointed ∞-category generated by ∗+ = S0.
Now we introduce stable ∞-categories, which behave like D(R) ≃ N(ChR)[W

−1
qiso].

Definition 3.3. Let C be a pointed ∞-category. A triangle in C is a square of the form

X Y

0 Z.

f

g

This is specified by a functor N(∆1 ×∆1)→ C sending the bottom corner to 0.

We say a triangle is exact if it is a pullback, and coexact if it is a pushout.

Example 3.4. If f : E → X in S∗, then an exact triangle looks like

f−1(x) E

∗ X.

⌟
f

Example 3.5. We have loops and suspension in S∗ given by the (homotopy) pullback and pushout squares

ΩX ∗

∗ X

⌟
X ∗

∗ ΣX
⌜

Our goal is to define Σ : C→ C and Ω : C→ C for a general pointed ∞-category.

Definition 3.6. For C finitely bicomplete, we define CΣ ⊆ Fun(∆1 × ∆1,C) to be the full subcategory
spanned by diagrams of the form

X ∗

∗ ΣX
⌜

Note that maps between such diagrams are the same as maps X → Y . Thus there is an equivalence

CΣ ∼−→ C,

and similarly CΩ ∼−→ C.
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We have

Γ Fun(C,CΣ)

∗ Fun(C,C).

∼
⌟

≃

id

Thus there is a unique section sΣ : C→ CΣ. So now we can define Σ : C→ C to be

Σ : C
sΣ−→ CΣ ∼−→ C.

Analogously we can define Ω.

Theorem 3.7. If C is a pointed and finitely bicomplete category, we have an adjunction

Σ : C ⇆ C : Ω.

In particular, for X,Y ∈ C we have

HomC(ΣX,Y ) ≃ ΩHomC(X,Y ).

This is because maps from ΣX → Y are in bijection with

ΩHom(X,Y ) Hom(0, Y )

Hom(0, Y ) Hom(ΣX,Y ).

This tells us that

π0 HomC(ΣX,Y ) = π1 HomC(X,Y ),

which is a group. Similarly we get that π0 Hom(Σ2X,Y ) is an abelian group.

Definition 3.8. Given f : X → Y in C, we can define the fiber and cofiber as

fib(f) X

∗ Y

⌟
X Y

∗ cof(f)
⌜

Definition 3.9. An ∞-category is stable if it is

• pointed
• finitely bicomplete
• triangles are exact if and only if they are coexact.

This last condition is equivalent to any of the following

• a square is a pullback iff it is a pushout
• Σ : C ⇆ C : Ω is an equivalence
• cof : Fun(∆1,C)→ Fun(∆1,C) : cof is an equivalence.

Let C be a stable ∞-category. Then

π0 Hom(X,Y ) ∼= π0(Hom(ΣX ′, Y )) ∼= π0 Hom(Σ2X ′′, Y )

for some X,X ′′. Thus Ho(C) is an additive category.
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We furthermore have that Ho(C) is triangulated. Given f : X → Y in C,

X 0

Y cof(f)

0 ΣX

f
⌜

⌜

Example 3.10. C = D(R). Show this has all the properties mentioned above.

Given C pointed, we want it to be stable. We can force Ω : C→ C to be an equivalence by considering

Sp(C) := lim
(
· · · Ω−→ C

Ω−→ C
)
.

Historically, we tried to invert Σ (Freudenthal theorem).

We could take Spnaive, whose objects are finite pointed spaces, and morphisms are stable maps [X,Y ].
The problem is that Σ is not an equivalence on this category.

We could instead take SpWh, where objects are pairs (X,n) with X a pointed finite CW complex, and

Hom((X,n), (Y,m)) := colimk

[
Σn+kX,Σm+kY

]
.

Then we have

Spnaive ↪−→ SpWh

X 7→ (X, 0).

The suspension takes the form

Σ : SpWh → SpWh

(X,n) 7→ (X,n+ 1).

Thus

SpWh = colim
(
Sfin∗

Σ−→ Sfin∗
Σ−→ · · ·

)
.

and we have that

Sp(S∗) = Ind(SpWh)

= Indcolim
(
Sfin∗

Σ−→ Sfin∗
Σ−→ · · ·

)
= lim

(
Ind(Sfin∗ )

Ω← Ind(Sfin∗ )
Ω← · · ·

)
= lim

(
S∗

Ω← S∗
Ω← · · ·

)
.

Note that colim
(
S∗

Σ−→ S∗
Σ−→ · · ·

)
won’t work.

Definition 3.11. If C is a pointed finitely bicomplete ∞-category, a prespectrum in C is defined to be a
functor

N(Z× Z)→ C,

whereXi,j = 0 for i ̸= j. Note that we get induced structure maps αn : ΣXn → Xn+1 and βn : Xn → ΩXn+1.

A prespectrum is called a spectrum in C if βn’s are equivalences for all n. We define Sp(C) to be the full
subcategory of spectra.

Let

Sp(C) ≃ lim
(
C

Ω← C
Ω← · · ·

)
.
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If C = S∗, we will write Sp = Sp(S∗) as the ∞-category of spectra. We define Ho(Sp) to be the stable
homotopy category.

There is a functor

Σ̃∞ : C→ PSp(C),

given by sending X to the prespectrum whose (i, i)th entry is ΣiX.
Then there is a functor for C presentable

PSp(C)→ Sp(C)

sending a prespectrum X to X̃, defined by

X̃n := colim(Xn
βn−−→ ΩXn+1 → · · · ).

Then X̃n ≃ colimkΩ
kXn+k ≃ colimkΩ

k+1Xn+k+1. As Ω is a right adjoint it commutes with filtered colimits
(using presentable here), so this can be rewritten as

ΩcolimkΩ
kXn+k+1 ≃ ΩX̃n+1.

4. Multiplicative structure in spectra

Last time we had a universal property for C
Σ∞

−−→ Sp(C), where C was a pointed presentable ∞-category.
We had that

FunL(Sp(C),D)
∼−→ Fun(C,D)

for any stable presentable ∞-category D.
We denote by Σ∞S0 =: S ∈ Sp = Sp(S∗), and recall that

FunL(Sp,D) ≃ FunL(S∗,D) ≃ D.

So we call Sp the free stable ∞-category generated by ∞.
Q: Can we give a symmetric monoidal structure on Sp analogous to ⊗Z in Ab?
Spanier-Whitehead category: Recall Freudenthal says that if X and Y are finite CW complexes,

then the sequence [ΣkX,ΣkY ] stabilizes in k. So Spnaive has objects given by finite CW complexes, and
homs given by stable maps.

To invert Σ, we introduced SpWh, where objects are (X,n) and homs (X,n)→ (Y,m) are

colimk

[
Σn+kX,Σm+kY

]
.

Formally in ∞-categories, we have that

SpWh = colim
(
Spfin∗

Σ−→ Spfin∗
Σ−→ · · ·

)
.

Then Sp ≃ Ind(SpWh).
Why finiteness? By adjunction we can see

Hom((X, 0), (Y, 0)) = colimk

[
ΣkX,ΣkY

]
= colimk

[
X,ΩkΣkY

]
= [X, colimkΩ

kΣkY ],

which holds if X is compact (e.g. finite CW). Thus if {−,−} is a hom for spectra, we would have

{X,Y } = {X,ΩnΣnY } .

What is the monoidal structure on SpWh? Recall in S∗ we have a smash product, so we could define

(X,n) ∧ (Y,m) := (X ∧ Y, n+m).

The unit is (S0, 0). This smash product is difficult to translate to spectra however.

Definition 4.1. For all X ∈ Sp, we define

πn(X) = HomHo(Sp)(Σ
nS, X) =: [ΣnS, X] ∈ Ab.
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In particular if X is a suspension spectrum, we get

πk(Σ
∞X) = [ΣnS,Σ∞X]

= colimk

[
Σn+kS0,ΣkX

]
= colimkπn+k(X)

= πs
n(X).

This is the stable homotopy group of X. It gives us a functor

Sp→ N(Ab)

X 7→ πn(X).

This factors through

Sp
Ω∞

−−→ S∗
πn−−→ N(Ab)

for n ≥ 2.
(HA 1.4.3.8) The collection of these functors reflect equivalences. That is, if πn(X)

∼−→ πn(Y ) for all n,

then X
∼−→ Y in Sp.

Definition 4.2. We define Sp≥0 to be the ∞-category of connective spectra, the full subcategory of Sp on
those X for which πn(X) = 0 for n < 0.

Example 4.3. For all X ∈ S∗, we have that Σ∞X ∈ Sp≥0.

We get an adjunction

Sp≥0 ⇆ Sp : τ≥0,

where the right adjoint to the inclusion is the connective cover.
If X ∈ S∗ and Y ∈ Sp≥0, we have that

[Σ∞X,Y ] ≃ [X,Y0] .

That is, Ω∞Y ≃ Y0.
If Y ∈ Sp≥0 then Ω∞Y = Y0 is an infinite loop space. That is, for all k ≥ 0, we have that Y0 ≃ ΩkYk.

May recognition tells us that

AlggplikeE∞
(S∗) ≃ Sp≥0.

If C is a symmetric monoidal category, then CAlg(C) is also a sym mon cat with some underlying tensor
product.

For example if X,Y are E∞-algebras which are grouplike in spaces, then X ∧ Y is an E∞-algebra in S∗.
It is not true that if X and Y are infinite loop spaces then X ∧ Y is an infinite loop space.

Example 4.4. Let G be an abelian group, then K(G, 0) is an ∞-loop space, with K(G, 0) ≃ ΩnK(G,n).

Let HG ∈ Sp≥0 be its corresponding spectrum, called the Eilenberg-Maclane spectrum of G. This gives a
functor

N(Ab)→ Sp≥0

G 7→ HG.

We want a monoidal structure on Sp and Sp≥0 for this functor to be compatible with ⊗Z in Ab.

Ideas for monoidal structure on Sp:

• On SpWh we had (X,n) ∧ (Y,m) = (X ∧ Y, n+m)
• AlgE∞

(S∗)
• Ab,⊗Z
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Boardman: We could define (X ∧ Y )n = Xa(n) ∧ Yb(n) where a(n) + b(n) = n, and then we could
“Ω-spectrify.” There are lots of choices for a(n) and b(n).

Adams: We could define

(X ∧ Y )n ≃
∨
eij

Σn−i−j−dXi ∧ Yj ∧M(τ)
/
∼

where eij is the square on the Z× Z grid with bottom left corner based at (i, j), open on the top and right
sides, and M(τ) is the Thom complex of a bundle over eij .

Indexing on Z× Z is hard because we need to understand choices. Model categories allow us to switch
Z× Z to something that records the choices.

Symmetric spectra: we get a model category SpΣ indexed on finite sets and injective morphisms
(Hovey-Shipley-Smith).

Orthogonal spectra: (or EKMM spectra) SpO, indexed on real inner product spaces. This is by
Mandell-May-Schwede-Shipley.

Theorem 4.5. (Lewis, ’91) There is no good 1-category Sp1 that describes Sp with a monoidal structure
so that:

(1) Sp1 is symmetric monoidal
(2) There is an adjunction Σ∞ : Top∗ ⇆ Sp1 : Ω∞

(3) We have that Σ∞S0 is the unit
(4) Ω∞ is lax symmetric monoidal
(5) For any pointed space, Ω∞Σ∞X ≃ colimkΩ

kΣkX. (that is, these functors are really doing stabi-
lization of spaces)

For symmetric and orthogonal spectra, it is (3) that messes up — you really need a fibrant replacement.
In EKMM they force (3) to be true, but fail (5).

How to think of X ∧ Y in Sp? We use the universal properties, and try to understand its homotopy
groups. There is a Künneth spectra sequence to compute πn(X ∧ Y ).

Recall that FunL(S,C) ≃ C for C any presentable ∞-category. This should remind us of the statement

that HomR(R,M) = M for M an R-module. So we want to think of FunL(−,−) as an internal hom
somewhere.

Definition 4.6. Let PrL denote the (very large) ∞-category of presentable ∞-categories, where

HomPrL(C,D) := FunL(C,D).

Fact 4.7. This is an internal hom — i.e. if C and D are presentable, then FunL(C,D) is presentable.3

We have that

FunL(C1,Fun
L(C2,D)) ≃ FunBL(C1 × C2,D),

that is, functors C1 × C2 → D which are colimit preserving in each variable.
So we want some tensor product so that the above is equivalent to FunL(C1 ⊗ C2,D).

Fact 4.8. If C is closed monoidal, then Cop becomes closed monoidal, but where the tensor product and
hom switch roles.

The op of PrL is PrR, where we take limit-preserving functors! So we can check that

C1 ⊗ C2 ≃ FunR(Cop
1 ,C2).

3If we took Fun instead of FunL, the size might increase, but in fact FunL(C,D) is presentable in the same size sense that
mC and D are.
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By construction S is the monoidal unit, since

S⊗ C = FunR(Sop,C)

=
(
FunL(S,Cop)

)op
= (Cop)op

= C.

Here we are using that

FunR(−,−) = FunL(−op,−op)op.

So we need to create our operator category
(
PrL

)⊗ ⊆ Cat⊗∞ ≃ N(sSet⊗)[W−1Joyal]. We had a cocartesian

fibration Cat⊗∞ → Fin∗, and we’re going to restrict fibers to get the correct thing. The fibers will look like
(C1, . . . ,Cn) with Ci presentable, and appropriate morphisms.

So the construction we just did argues that PrL ↪−→ Cat∞ is a lax symmetric monoidal functor. Then

AlgE∞
(
L

Pr) = {presentably symmetric monoidal ∞-cats} ,
and S is the initial object. This provides the universal property of spaces with its monoidal structure
S× S→ S, colimit-preserving in each variable, with the point as the unit.

5. Brown Representability

We’ve seen that the monoidal product on spectra has two intuitions:

(1) Sp≥0 ≃ AlggplikeE∞
(S∗)

(2) SpWh = colim
(
Sfin∗

Σ−→ · · ·
)
.4 This had a smash product.

Recall (S,×, ∗) was the initial object in AlgE∞

(
PrL

)
. We saw we had(

L

Pr,⊗S
)
→
(
Cat∞,×,∆0

)
,

with tensor C⊗D = FunR(Cop,D) and internal hom FunL(C,D).

We have Catst∞ ⊆ Cat∞ on stable ∞-categories and exact functors, and a corresponding PrLst ⊆ PrL

spanned by stable ∞-categories.
The stabilization functor C 7→ Sp(C) can be viewed as left adjoint to the inclusion

Sp :
L

Pr ⇆
L

Pr
st

Tensoring with spectra, we get

C⊗ Sp = FunR(Cop,Sp)

= FunR(Cop, lim (S∗ ← · · · ))

= lim
(
FunR(Cop, S∗)← · · ·

)
= lim (C∗ ← · · · )
= Sp(C).

Fact: If C,D stable then FunL(C,D) ∈ PrLst.

We can think of stabilization as “extension of scalars” along S∗
Σ∞

−−→ Sp. We have a monoidal adjunction(
L

Pr,⊗, S
)

⇆

(
L

Pr
st
,⊗,Sp

)
.

Recall Sp is the initial object in PrLst. This characterizes spectra together with

Sp× Sp
∧−→ Sp

4We have that Sfin∗ is finite CW complexes, not the compact objects in S∗.
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monoidal and bicolimit preserving so that S is the unit.
We have that Σ∞+ : S→ Sp is strong monoidal, and Ω∞ : Sp→ S is lax monoidal, implying that

Σ∞+X ∧ Σ∞+ Y ≃ Σ∞+ (X × Y ).

We can also shift

Σ∞−k : S∗ ⇆ Sp : Ω∞−k.

We call Ek = Ω∞−kE.
Formula: For any E ∈ Sp, we have that

E ≃ colimkΣ
∞−kΩ∞−kE

≃ colimkΣ
∞−kEk.

For E,F ∈ Sp

E ∧ F = (colimaΣ
∞−aEa) ∧

(
colimbΣ

∞−bFb

)
= colima,bΣ

∞−a−bEa ∧ Fb.

Example 5.1. Recall Mayer-Vietoris: for U, V ⊆ X open, we have an LES

· · · → H∗(U ∩ V )→ H∗(U)⊕H∗(V )→ H∗(U ∪ V )→ H∗−1(U ∩ V )→ · · ·

Recall that H∗(X) = H∗(C∗(X)), and by Dold-Kan, we have that C∗(X) = π∗Z[Sing(X)]. Let’s reinterpret
Mayer-Vietoris in this setting. It is saying that there is a homotopy pullback in sSet of the form

ZSing∗(U ∩ V ) ZSing∗U

ZSing∗V ZSing∗U ∪ V.

⌟

We can view homology as

CWfin
∗ → Kan

X 7→ ZSing∗X.
Mayer-Vietoris is the statement that this sends homotopy pushouts to homotopy pullbacks. We can view
this functor as Sfin∗ → S.

Q: Can we do this for all homology theories?

Definition 5.2. (Eilenberg-Steenrod) A (reduced) homology theory is
{
Ẽn : CWfin

∗ → Ab
}
such that

(1) Ẽn invariant under homotopy

(2) Excision: Ẽi+1(ΣX) ∼= Ẽi(X)

(3) Additivity: Ẽi(X ∨ Y ) ∼= Ẽi(X)⊕ Ẽi(Y )
(4) Exactness: if f : X → Y then

Ẽn(X)→ Ẽn(Y )→ Ẽn(Cf).

Goal: We can view Ẽ∗ : CW∗ → Ab as a certain Ẽ : Sfin∗ → S.

Axiom (1) allows us to extend Ẽ∗ to Ho(Sfin∗ ). Axiom (2) comes from

C∗(ΣX)[−1] ≃qiso C∗(X).

If and only if ΩZSingΣX ≃ ZSingX. So we’re rephrasing that

ΩẼ(ΣX) ≃ Ẽ(X).

Axiom (3) comes from C∗(X ∨ Y ) ≃ C∗(X)⊕ C∗(Y ). Translating this over to simplicial sets via Dold-Kan,
we get

ZSingX ∨ Y ≃ ZSingX × ZSingY.
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This gives Ẽ(X ∨ Y ) ∼= Ẽ(X)⊕ Ẽ(Y ) and hence π∗(X × Y ) ∼= π∗(X)⊕ π∗(Y ).
(4) Says πi(fib(f)) = ker(πi(f)). We have that C∗(X) ≃ ker (C∗(Y )→ C∗(f)). Then

ZSing∗(X)
∼−→ fib (ZSingY → ZSingCf) .

Hence

Ẽ(X) ≃ fib
(
Ẽ(Y )→ Ẽ(Cf)

)
.

That is,

X Y

∗ Cf
⌜

is sent to

Ẽ(X) Ẽ(Y )

∗ Ẽ(Cf).

⌟

Definition 5.3. Let C be an ∞-category. We say a functor F : Sfin∗ → C is

(1) excisive if F sends pushouts to pullbacks
(2) reduced/pointed if F (∗) = ∗.

We write Exc∗(S
fin
∗ ,C) ⊆ Fun(Sfin∗ ,C) for excisive and reduced functors.

Given any Sfin∗
Ẽ−→ S excisive, we obtain a reduced homology theory

Sfin∗
Ẽ−→ S

πs
∗−→ Ab.

Theorem 5.4. There is an equivalence

Sp(C) ≃ Exc∗(S
fin
∗ ,C).

Proof. For some Ẽ ∈ Exc∗(S
fin
∗ , S), we want to define E ∈ Sp. We define E0 = Ẽ(S0), and E1 = Ẽ(S1),

etc. We can define E−n = ΩnE0. This works because

Sn ∗

∗ Sn+1
⌜

is sent to

Ẽ(Sn) ∗

∗ Ẽ(Sn+1).

⌟

This gives maps Ẽ(Sn)
∼−→ ΩẼ(Sn+1).

For the other direction, given E ∈ Sp, we can get an excisive functor sending

X 7→ X ∧ E0.

We can reinterpet

Ω∞ : Exc∗(S
fin
∗ , S)→ S

Ẽ 7→ Ẽ(S0).

We can show this is universal. □
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Given E a spectrum, we have an associated reduced homology theory where Ẽ∗(X) := πs
∗X ∧ E0.

We have that

Σ∞+X ∧ E = colimkΣ
∞−kX ∧ Ek.

We have that

Π∗(Σ
∞X ∧ E) = π∗

(
colimkΣ

∞−kX ∧ Ek

)
= colimkπ∗

(
Σ∞−kX ∧ Ek

)
= colimkπ∗+k(X ∧ Ek).

This is exactly the definition of πs
∗(X ∧ E0).

Thus

Ẽ∗(X) = π∗Σ
∞X ∧ E.

Example 5.5. Sphere spectrum S ∈ Sp gives the functor

Sfin∗ → S

X 7→ X ∧QS0,

where Q(−) = Ω∞Σ∞(−) = colimkΩ
kΣk(−). Model categorically they think of this as just the natural

inclusion Sfin∗ → S because they derive after including. The homology theory is S̃∗ = πs
∗(−).

Example 5.6. We have that H̃Z∗(X) = H∗(X;Z). Dold-Thom lets us relate Σ∞X ∧HZ with ZSing(X)
somehow.

Definition 5.7. For F a spectrum, we can define

Ẽ∗(F ) = π∗(E ∧ F ).

Theorem 5.8. (Brown representability) If Ẽ∗(−) : CWfin
∗ → Ab is a reduced homology theory, then

there exists E ∈ Sp such that Ẽn(X) = πS
n (X ∧ E0).

We looked at π∗ of E ∧ −. Taking the same thing for its adjoint, we call F (E,−) the right adjoint to
E ∧ − (this exists because colimit-preserving + presentable). Can take the internal hom to be

F (E,E′)n = HomSp(E,Σ
nE′).

Can define Ẽn(X) = [X,En] = [Σ∞−nX,E]. In fact, F (E,E′)n = HomSp(E,Σ
nE′). This is because

HomSp(E ∧ S, F ) ≃ HomSp(S, F (E,F )).

Think HomR(R,M) = M and HomChR
(R,M∗) = M0. Then HomSp(S, E) ≃ E0. This follows from the

loops suspension adjunction:

Hom(Σ∞+ ∗, E) = Hom(S, E) = Hom(∗,Ω∞E) = E0.

For E ∈ Sp can define reduced associated cohomology theory for X ∈ S∗

Ẽn(X) = [X,En] = πnF (Σ
∞X,E).

6. Modules in spectra

Monoidal categories which are not symmetric:

• Let C be any category, and look at End(C) with composition and the identity
• G any non-abelian monoid, defines a discrete monoidal category.
• Bimodules over any non-commutative ring
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Recall a sm ∞-cat was C⊗ → N(Fin∗) a cocartesian fibration + Segal condition. This gave N(Fin∗)→
Cat∞.

We had τ : ⟨2⟩ → ⟨2⟩, sending 0 7→ 0 and swapping 1,2. This alone gave a symmetric structure on ⊗.
We want to restrict from Fin∗ to throw out τ and its friends.

There are multiple ways to do this: can view ∆op ⊆ Fin∗ sending [n] 7→ ⟨n⟩. Given α : [k]→ [n] we send
it to a map

⟨n⟩ → ⟨k⟩

j 7→

{
i ∃i : j ∈ [α(i− 1) + 1, α(i)]

∗ else

The composite

∆op → Fin∗ ⊆ Set∗

defines the pointed simplicial set S1 = ∆1/∂∆1 ∈ sSet∗.

Definition 6.1. A monoidal ∞-cat is a cocart fibration C⊗ → N(∆op) with the Segal condition C⊗[n] →(
C⊗[1]

)×n
given by cocartesian lifts of pi : [1]→ [n], 0 7→ i− 1, 1 7→ i.

By straightening we get N(∆op)→ Cat∞ sending [n]→ C×n. This is some kind of bar construction.

Definition 6.2. α ∈ ∆ is inert if α : [n] → [k] is injective, and im(α) ⊆ [k] is convex. Inert things in ∆op

map to inert things in Fin∗ under the map defined above.

Definition 6.3. A lax monoidal functor F⊗ : C⊗ → D⊗ is a functor

C⊗ D⊗

N(∆op),

F⊗

so that F⊗ sends cocart lifts of inert to cocart lifts.

A lax monoidal functor F⊗ is one that sends all cocartesian lifts to cocartesian lifts.
Given C a monoidal ∞-cat, we have that

AlgE1
(C) = FunlaxE1

(N(∆op),C⊗).

Every symmetric monoidal ∞-cat can be viewed as a monoidal ∞-cat via

C̃⊗ C⊗

N(∆op) N(Fin∗).

⌟

We could also straighten then precompose with N(∆op)→ N(Fin∗).
To define modules over a ring, we will use the bar construction [n] 7→ N ⊗R⊗n ⊗M .

Definition 6.4. Let p : C⊗ → N(∆op) be a monoidal ∞-cat. An ∞-cat M is said to be left tensored over
C if there is a cocart q : E→ N(∆op) so that

E C⊗

N(∆op).

q

f

p

that sends cocart lifts to cocart lifts, such that

E[n]
∼−→ C⊗[n] × E⊗{n}
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for {n} ⊆ [n], with M = E[0], and E[1] ≃ C×M. This is formalizing a functor C×M→M compatible with
monoidal structure on C.

Example 6.5. C is left tensored over itself. Then E = C̃⊗ with E[n] = C×(n+1).

Definition 6.6. Given M left tensored over C, a left module of M is a map s : N(∆op)→M⊗ such that

N(∆op)
s−→M⊗

f−→ C⊗

is a lax monoidal functor (if α : [k]→ [n] is inert in ∆ then f(α) is a cocart fib of C⊗).

We write LMod(M) ⊆ FunN(∆op)(N(∆op),M⊗) spanned by left modules. We are interested in when
M = C. In that case

LMod(C)→ AlgE1
(C)

(M,A) 7→ A.

Given A ∈ AlgE1
(C), we can define A-modules as

AMod(C) LMod(C)

∗ AlgE1
(C).

⌟

A

Can define left A-modules and (A,A)-bimodules in a similar way.
Can defgine left modules in a sym mon ∞-cat

LModE∞(C) LMod(C) = LModE1
(C)

AlgE∞
(C) AlgE1

(C).

⌟

Can check that if A ∈ AlgE∞
(C) then AMod(C) ∼= ModA(C).

7. The Schwede–Shipley Theorem

Goal: generalize the Freyd-Mitchell and Gabriel theeorems.
Given a lax monoidal functor F : C→ D between (symmetric) monoidal ∞-cats, it induces a functor

AlgE1
(C)→ AlgE1

(D)

A 7→ F (A).

1-categorically if A ∈ C is an associative algebra, then F (A) is an associative algebra.
So lax monoidal is the correct notion needed to lift algebras.
∞-categorically, AlgE1

(C) are lax monoidal functors ∗ → C. The statement follows from the fact that
composition of lax monoidal functors is lax monoidal.

If F is lax symmetric monoidal, then we can lift

F : AlgE∞
(C)→ AlgE∞

(D).

We also have, for all A ∈ AlgE1
(C),

F : ModA(C)→ ModF (A)(D).

Recall

N(Ab)→ Sp

A 7→ HA.

Here

(1) (HA)n = K(A,n) for n > 0 and ∗ for n < 0
(2) HA : Sfin∗ → S sends X 7→ X ∧K(A, 0)

(3) By Brown representability, H̃n(X,A) ∼= [X,K(A,n)].
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(4) πn(HA) = A if n = 0 and 0 otherwise

HA ∈ Sp≥0 then the associated element in AlggplikeE∞
(S∗) is A as a discrete pointed space.

Given A,B ∈ Ab we can compare HA ∧HB with A⊗Z B. These are not the same.

π0HA ∧HB ∼= A⊗Z B

πnHA ∧HB ̸= 0 n > 0.

If A = B = F2, then

π∗ (HF2 ∧HF2) = F2[ξ1, ξ2, . . .]

with |ξi| = 2i − 1. This is the dual Steenrod algebra.
We can get a map HA ∧HB → H(A⊗Z B) by adjunction

π0 : Sp≥0 ⇆ N(Ab) : H(−).

Then

π0(E ∧ F ) ∼= π0(E)⊗Z π0(F ).

Thus π0 is strong symmetric monoidal.

Exercise 7.1. If L : C ⇆ D : R is an adjunction between symmetric monoidal categories, if L is strong
monoidal then R is lax monoidal.

Warning: π0 : Sp→ N(Ab) is not strong monoidal on the entire category of spectra.

Since the inclusion Sp≥0 ↪−→ Sp is lax symmetric monoidal, we have the composite N(Ab)
H−→ Sp≥0 → Sp

is, hence we get

N(Ring) = AlgE1
(N(Ab))→ AlgE1

(Sp)

R 7→ HR.

We call AlgE1
(Sp) ring spectra.

Can we compare with Ab = ModZ → D(Z)? Yes we can view D(Z) as ModHZ(Sp) in a monoidal way.
Recall that for R ∈ CRing, we get D(R) = N(ChR)[W

−1
proj], which is symmetric monoidal ∞-cat with

⊗L
R. We want a monoidal structure on ModHR(Sp) that mimics the derived tensor product.

Recall 1-categorically that R ∈ Alg(C,⊗, I) and M ∈ ModR(C) and N ∈ RMod(C), we define ⊗R by the
coequalizer

M ⊗R⊗N ⇒M ⊗N →M ⊗R N.

So on spectra we want a relative smash product.
We have to kill off much higher terms

M ∧HR N := colim
(
· · ·⇒M ∧HR∧2 ∧N ⇒M ∧HR ∧N ⇒M ∧N

)
More generally, given R ∈ AlgE1

(C), we can define M ⊗R N as the colimit of a bar construction. In a
1-category the higher maps don’t matter and we just recover the coequalizer definition.

We have

N(∆op)→ N(Fin∗)→ C ↪−→ Cat∞,

[n] 7→M ⊗R⊗n ⊗N.

For C = Sp, this defines (ModR(Sp),∧R, R). We can also define FR(M,−) : ModR(Sp)→ ModR(Sp) to
be the right adjoint of

M ∧R − : ModR → ModR.

Notation 7.2. If R ∈ AlgE∞
(Sp), and M,N ∈ ModR(Sp), we can define

TorR∗ (M,N) := π∗ (M ∧R N)

Ext∗R(M,N) := π−∗FR(M,N).
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We shall see that

π∗ (HM ∧HR HN) ∼= TorR∗ (M,N),

where R ∈ CAlg(Ab) and M,N ∈ ModR(Ab).
We have change of algebras: if f : A→ B in AlgE∞

(C), we get a monoidal adjunction

−⊗A B : ModA ⇆ ModB : f∗,

where extension is strong monoidal and restriction f∗ is lax.
In spectra this becomes

− ∧R : ModS = Sp ⇆ ModR : U.

Theorem 7.3. (Schwede-Shipley) Let C be a stable ∞-category. Then C ≃ ModRSp if and only if C is
presentable, and there exists C ∈ C compact generator such that if D ∈ C and ExtnC(C,D) ∼= 0 then D ≃ 0.

Lemma 7.4. If C is a stable ∞-category, and X,Y ∈ C, then HomC(X,Y ) ∈ Sp.

Proof. We have that HomC(X,Y ) ∈ S∗, so

ΩHomC(X,Y ) ≃ HomC(ΣX,Y ) ≃ HomC(X,Y ).

So these are infinite loop spaces. □

Proof of theorem: if C ≃ ModR(Sp), then C is presentable. Take C = R, then ExtnC(R,D) ∼= πnD. Then
D ≃ 0 if and only if π−nD = 0 for all n.

For the other direction, if C ∈ PrL, then as C is stable, there is a map

Sp⊗ C→ C

(E,C) 7→ E ⊗ C,

adjoint to HomC(C,−) valued in Sp. That is, C is tensored and cotensored over spectra.
We have

−⊗ C : Sp ⇆ C : HomC(C,−).

Let G = HomC(C,−), then the idea is that this is monadic and the monad is equivalent to − ∧S R for
some R.

Let α : D → D′ in C such that G(α) is an equivalence in Sp. Then G(Cα) ≃ 0.

πnCα ≃ Ext−nC (C,Gα) = 0,

so Cα ≃ 0, so α equivalence in C.
Then R := G(C) = HomC(C,C) = EndC(C) ∈ AlgE1

(Sp).
With E ∈ Sp and D ∈ C, get E ∧G(D) ≃ G(E ⊗D). This is true as G preserves all colimits, suffices to

check for E = S then obvious. R = G(C), E ∧R = G(X ⊗ C), Barr Beck Lurie monadicity.
If R = EndC(C) get an monoidal variant

AlgE∞
(Sp)→ AlgE∞

(
L

Pr)

R 7→ ModR.

So we can say that C ∈ AlgE∞
(PrL) belongs to the image above if and only if there is some I ∈ C a compact

generator.

Theorem 7.5. (Stable Dold Kan) Let R be a commutative ring. Then

(ModHR(Sp),∧R, HR) ≃
(
D(R),⊗L

R, R
)
.

Proof sketch. Take D∗ ∈ ChR, then Hn(D∗) = Ext−nR (R,D∗) ∼= Ext−nD(R)(R,D∗). Thus R is a
compact generator.
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Thus D(R) ≃ ModA(Sp), where A = EndD(R)(R), but we check

πn(A) ∼= Ext−nD(R)(R,R)

=

{
R n = 0

0 else,

so A ≃ HR. □

Shipley proved this in model categories in early 2000’s.

8. Universal trace methods for algebraic K-theory

Recall: for R ∈ Ring, we can define K0(R) = K0(P(R)). The latter K0 is Grothendieck group comple-
tion of commutative monoids, and here P(R) is iso classes of finitely generated projective (right) R-modules.

If M ⊕N ∼= Rn, then [M ] + [N ] = [Rn] in K0(R). That is, exact sequences split in K0(R).
Eilenberg swindle: If we just did projective, not also finitely generated, we would get 0 because any

projective M has M ⊕N ∼= Rn for some N,n, hence we could take

R∞ =M ⊕N ⊕M ⊕N ⊕ · · ·

Since M ⊕R∞ ∼= R∞, this would imply [M ] = 0.

Definition 8.1. Kn(R) = πn(BGL(R)+ ×K0(R)).

Here GL(R) = colimnGLn(R), and the plus construction is the universal H-space receiving a map from
BGL(R), abelianizing π1, ...

Note that BGL(R)+ ×K0(R) is an infinite loop space. It admits a Gersten-Wagoner delooping.
K-theory can be generalized to a much wider context, e.g. exact categories, and stable ∞-categories.
For example R corresponds to the stable ∞-category ModcpctHR (Sp). Taking compact objects is again to

avoid size issues.
Blumberg-Gepner-Tabuada: Define connective K-theory as a functor

Catst∞ → Sp≥0,

where Catst∞ is the category of stable ∞-categories and exact functors (preserves finite limits and colimits).

Definition 8.2. Let Catperf∞ ⊆ Catst∞ be the full subcategory spanned by idempotent-complete categories.

71



We have that C is idempotent complete if for all X ∈ C, and any e : X → X in C such that e2 ≃ e, we
have a splitting onto its image.

F.g. projective modules are idempotent complete, free modules are not.
Idempotent completion is a left adjoint to the inclusion:

Idem : Catst∞ ⇆ Catperf∞ : i.

We have that Idem(C) = Ind(C)ω (BGT 2.20).
Think of an idempotent complete stable ∞-category as the compact objects of a presentable stable

∞-category.
To define K(C) for C ∈ Catperf∞ , we can take

K(C) = |S•C≃| .
K-theory is comprised of two concepts:

• abelian group completion
• splitting exact sequences

Definition 8.3. Let A
F−→ B

G−→ C be exact functors btw stable ∞-categories.

(1) Say F is a Morita equivalence if Idem(F ) is an equivalence of ∞-categories

(2) The sequence is exact if F is fully faithful, G ◦ F ≃ 0, and C ≃ B/A in Catperf∞ .
(3) The sequence is split exact if there exist right adjoint functors F ′, G′ to F,G, respectively, so that

F ′F = id and GG′ = id.

Definition 8.4. Let E : Catst∞ → D where D ∈ PrLst. We say E is additive if it:

(1) inverts Morita equivalences
(2) preserves filtered colimits
(3) sends split exact sequences to split (co)fiber sequences in D, i.e. E(B) ≃ E(A) ∨ E(B).

Take

Catst∞
Idem−−−→ Catperf∞ ↪−→ Fun

((
Catperf∞

)op
, S
)

Sp−→ Fun(
(
Catperf∞

)op
,Sp)→ Fun(

(
Catperf∞

)op
,Sp)/ ∼

where we mod out by split exact sequences.
We call the resulting object Madd, and the composition

Uadd : Catst∞ →Madd.

This functor is the universal additive invariant, in the sends that

FunL(Madd,D)
U∗

add−−−→ Funadd(Cat
st
∞,D)

for all D ∈ PrLst.

Definition 8.5. For C ∈ Catperf∞ , we define

K(C) = HomMadd
(Uadd(Sp

Wh),Uadd(C)) ∈ Sp≥0.

We can make this universal property monoidal: if C is a symmetric monoidal ∞-category, then K(C) is
an E∞ ring spectrum.

Can construct ⊗ in Catperf∞ similar to PrL. This induces a monoidal structure on Funadd(Cat
perf
∞ ,Sp) by

Day convolution.
Here Uadd is strong monoidal. Then for all D ∈ AlgE∞

(PrL), we get

FunL,lax(Madd,D) ≃ Funlaxadd(Cat
perf
∞ ,D).

Application: Dennis trace K(R)→ THH(R). Here THH(R) = R ∧R∧Rop R. If R is a k-algebra, get

HH∗(R) = H∗(R⊗L
R⊗Rop R) = TorR⊗R

op

∗ (R,R).

Can replace R by any stable ∞-cat C. Here

THH(C) = colim
(
· · · ⨿(c0,...,cn) C(cn−1, cn) ∧ · · · ∧ C(cn, c0)

)
.
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Here THH(ModperfR ) = THH(R).

We have THH : Catst∞ → Sp≥0. It is an additive invariant (clearly preserves Morita equivalence and
filtered colimits). Can use Dennis-Waldhausen-Morita argument to show it sends split exact sequences to
cofiber sequences.

Theorem 8.6. Let E be any additive invariant, i.e. E ∈ Funadd(Cat
st
∞,Sp). Then Nat(K,E) ≃

E(SpWh).

We see that

Nat(K(−),THH(−)) ∼= THH(SpWh) ≃ THH(S) ≃ S.
Applying π0, we get that

[K(C),THH(C)] ∼= π0S ∼= Z.

Given F : K(C)→ THH(C), we get

S→ Map(Uadd(Sp
Wh),Uadd(Sp

Wh)) ≃ K(S) F−→ THH(S) ≃ S.
The Dennis trace picks up 1 ∈ Z.

We can view K(R)→ THH(R) via

BGLn(R)→ BcycGLn(R)→ BcycMn(R)→ BcycR.

On π0, we get

K0(R)→ HH0(R).

For R ∈ Ring, we send [P ] 7→ tr(idP ⊕ 0).
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