top of page

My research is in the area of algebraic topology known as stable homotopy theory, in connection with algebraic K-theoryhigher category theory and theoretical computer science. I am particularly interested in showing how certain algebraic structures lead to new and effective computations. For instance, I have shown that model categories fail to accurately represent so-called coalgebraic structures in stable homotopy theory, and hence we need the language of ∞-categories to accurately capture homotopy coherent structures. More recently, I have studied trace methods to compute algebraic K-theory and introduced new variants of topological Hochschild homology. I have also extended my interests to theoretical computer science, applying methods of category theory and coalgebras to study algebraic data type interactions.

My Research




Coinductive control of inductive data types, with Paige Randall North, to appear on 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Spanier-Whitehead duality for topological coHochschild homology, with Haldun Özgür Bayındır, to appear in Journal of the London Mathematical Society


Koszul Duality in Higher Topoi, with Jonathan BeardsleyHomology, Homotopy and Applications 25 (2023), no. 1, 53-70.


Coalgebras in the Dwyer-Kan Localization of a Model Category, Proceedings of American Mathematical Society 150 (2022), no. 10, 4173–4190 


The Coalgebraic Enrichment of Algebras in Higher Categories, Journal of Pure and Applied Algebra 226 (2022), no. 3.


Coalgebras in symmetric monoidal categories of spectra, with Brooke ShipleyHomology, Homotopy and Applications 21 (2019), no.1, 1-18.



Undergrad and grad projects


Cofiber Sequences of Thom Spectra over B(ℤ/2)^n, Master thesis advised by Haynes Miller (Fall 2014).


Group Cohomology, EPFL Master project supervised by Jacques Thévenaz (Spring 2014).

An Introduction to Stable Homotopy Theory, EPFL Master project supervised by Kathryn Hess (Fall 2013).

The Serre Spectral Sequence (using Dress' construction), EPFL Bachelor project supervised by Kathryn Hess (Spring 2013).

Fiber Bundles in Homotopy Theory (in French), EPFL Bachelor project supervised by Kathryn Hess (Fall 2012).

bottom of page